Uma Abordagem Híbrida Apoiada por Algoritmo Bioinspirado e Tecnologias de Web Semântica para Recomendação Personalizada de Objetos de Aprendizagem
Resumo
Este trabalho apresenta uma abordagem que faz uso de tecnologias de Web Semântica e um algoritmo bioinspirado para realizar recomendação personalizada de Objetos de Aprendizagem (OA). Diferente de abordagens já propostas, esta pesquisa combina repositórios de Ambiente Virtual de Aprendizagem (AVA) e materiais disponibilizados na Web (Youtube e Wikipedia), estruturados em formato de OA, com o propósito de cobrir tópicos de um determinado conteúdo com materiais em formatos distintos. Foram realizados experimentos distintos sendo que o principal experimento considerou três processos de recomendação na intenção de observar possibilidades de preferências. A média geral da avaliação da recomendação foi relativamente melhor desconsiderando o uso dos estilos de aprendizagem, porém não houve significância estatística.
Referências
Belizário Júnior, C. (2018). Reúso de conteúdo da web na recomendação personalizada de objetos de aprendizagem: uma abordagem baseada em um algoritmo genético, tecnologias da web semântica e uma ontologia. Master’s thesis, Universidade Federal de Uberlândia. https://doi.org/10.5753/cbie.sbie.2018.1533.
Belizário Júnior, C. and Dorça, F. (2018). Uma abordagem para a criação e recomendação de objetos de aprendizagem usando um algoritmo genético, tecnologias da web semântica e uma ontologia. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE), volume 29, page 1533. https://doi.org/10.5753/cbie.sbie.2018.1533.
Bernhard, K. and Vygen, J. (2008). Combinatorial optimization: Theory and algorithms. Springer, Third Edition, 2005.
Bhaskaran, S. and Santhi, B. (2017). An efficient personalized trust based hybrid recommendation (tbhr) strategy for e-learning system in cloud computing. Cluster Computing, pages 1–13. https://doi.org/10.1007/s10586-017-1160-5.
Bocanegra, C. L. S., Ramos, J. L. S., Rizo, C., Civit, A., and Fernandez-Luque, L. (2017). Healthrecsys: A semantic content-based recommender system to complement health videos. BMC medical informatics and decision making, 17(1):1–10. https://doi.org/10.1186/s12911-017-0431-7.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to algorithms. MIT press.
de Borba, E. J., Gasparini, I., and Lichtnow, D. (2017). The use of time dimension in recommender systems for learning. In International Conference on Enterprise Information Systems, volume 2, pages 600–609. SCITEPRESS.
De Medio, C., Limongelli, C., Marani, A., and Taibi, D. (2019). Retrieval of educational resources from the web: A comparison between google and online educational repositories. In International Conference on Web-Based Learning, pages 28–38. Springer. https://doi.org/10.1007/978-3-030-35758-0_3.
Doja, M. et al. (2020). An improved recommender system for e-learning environments to enhance learning capabilities of learners. In Proceedings of ICETIT 2019, pages 604–612. Springer. https://doi.org/10.1007/978-3-030-30577-2_53.
Drachsler, H., Verbert, K., Santos, O. C., and Manouselis, N. (2015). Panorama of Recommender Systems to Support Learning, pages 421–451. Springer US, Boston, MA. https://doi.org/10.1007/978-1-4899-7637-6_12.
Dwivedi, P., Kant, V., and Bharadwaj, K. K. (2018). Learning path recommendation based on modified variable length genetic algorithm. Education and Information Technologies, 23(2):819–836. https://doi.org/10.1007/s10639-017-9637-7.
EL AISSAOUI, O. and OUGHDIR, L. (2020). A learning style-based ontology matching to enhance learning resources recommendation. In 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), pages 1–7. IEEE. https://doi.org/10.1109/IRASET48871.2020.9092142.
El-Bishouty, M. M., Chang, T.-W., Graf, S., Chen, N.-S., et al. (2014). Smart e-course recommender based on learning styles. Journal of Computers in Education, 1(1):99–111. https://doi.org/10.1007/s40692-014-0003-0.
García-Floriano, A., Ferreira-Santiago, A., Yáñez-Márquez, C., Camacho-Nieto, O., Aldape-Pérez, M., and Villuendas-Rey, Y. (2017). Social web content enhancement in a distance learning environment: intelligent metadata generation for resources. International Review of Research in Open and Distributed Learning, 18(1):161–176. https://doi.org/10.19173/irrodl.v18i1.2646.
Gordillo, A., Barra, E., and Quemada, J. (2017). A hybrid recommendation model for learning object repositories. IEEE Latin America Transactions, 15(3):462–473. https://doi.org/10.1109/TLA.2017.7867596.
Gordillo, A., López-Fernández, D., and Verbert, K. (2020). Examining the usefulness of quality scores for generating learning object recommendations in repositories of open educational resources. Applied Sciences, 10(13):4638. https://doi.org/10.3390/app10134638.
Hameed, M. R. and El-Ameer, A. S. (2019). Proposed recommender system for open educational resources for informatics institute for postgraduate studies. In 2019 International Engineering Conference (IEC), pages 126–130. IEEE. https://doi.org/10.1109/IEC47844.2019.8950569.
Hassan, M. and Hamada, M. (2017). Smart media-based context-aware recommender systems for learning: A conceptual framework. In 2017 16th International Conference on Information Technology Based Higher Education and Training (ITHET), pages 1–4. IEEE. https://doi.org/10.1109/ITHET.2017.8067805.
İnce, M., Yiğit, T., and Işık, A. H. (2017). A hybrid ahp-ga method for metadata-based learning object evaluation. Neural Computing and Applications, pages 1–11. https://doi.org/10.1007/s00521-017-3023-7.
Jordán, J., Valero, S., Turró, C., and Botti, V. (2020). Recommending learning videos for moocs and flipped classrooms. In International Conference on Practical Applications of Agents and Multi-Agent Systems, pages 146–157. Springer. https://doi.org/10.1007/978-3-030-49778-1_12.
Kirschner, P. A. (2017). Stop propagating the learning styles myth. Computers & Education, 106:166–171. https://doi.org/10.1016/j.compedu.2016.12.006.
Kurilovas, E., Zilinskiene, I., and Dagiene, V. (2014). Recommending suitable learning scenarios according to learners’ preferences: An improved swarm based approach. Computers in Human Behavior, 30:550–557.
Lops, P., De Gemmis, M., and Semeraro, G. (2011). Content-based recommender systems: State of the art and trends. In Recommender systems handbook. Springer. https://doi.org/10.1007/978-0-387-85820-3_3.
Morillo-Palacios, B. and Gutiérrez-Cárdenas, J. (2020). Content-based learning object recommendation system using a user profile ontology for high school students. In Proceedings of the Future Technologies Conference, pages 838–858. Springer. https://doi.org/10.1007/978-3-030-63128-4_63.
Nafea, S. M., Siewe, F., and He, Y. (2019). On recommendation of learning objects using felder-silverman learning style model. IEEE Access, 7:163034–163048. https://doi.org/10.1109/ACCESS.2019.2935417.
Obeid, C., Lahoud, I., El Khoury, H., and Champin, P.-A. (2018). Ontology-based recommender system in higher education. In Companion Proceedings of the The Web Conference 2018, pages 1031–1034. https://doi.org/10.1145/3184558.3191533.
Pal, S., Pramanik, P. K. D., Majumdar, T., and Choudhury, P. (2019). A semi-automatic metadata extraction model and method for video-based e-learning contents. Education and Information Technologies, 24(6):3243–3268. https://doi.org/10.1007/s10639-019-09926-y.
Pereira Júnior, C., Araújo, R. D., and Dorça, F. A. (2020a). Recomendação personalizada de conteúdo instrucional complementar usando repositório de objetos de aprendizagem e recursos da web. In Anais do XXXI Simpósio Brasileiro de Informática na Educação, pages 1293–1302. SBC. https://doi.org/10.5753/cbie.sbie.2020.1293.
Pereira Júnior, C., Belizário Júnior, C., Araújo, R., and Dorça, F. (2020b). Personalized recommendation of learning objects through bio-inspired algorithms and semantic web technologies: an experimental analysis. In Anais do XXXI Simpósio Brasileiro de Informática na Educação, pages 1333–1342, Porto Alegre, RS, Brasil. SBC. https://doi.org/10.5753/cbie.sbie.2020.1333.
Pereira Júnior, C. X., Dorça, F. A., and Araújo, R. D. (2019). Towards an adaptive approach that combines semantic web technologies and metaheuristics to create and recommend learning objects. In 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT), volume 2161, pages 395–397. IEEE. https://doi.org/10.1109/ICALT.2019.00118.
Pu, P., Chen, L., and Hu, R. (2011). A user-centric evaluation framework for recommender systems. In Proceedings of the fifth ACM conference on Recommender systems, pages 157–164. https://doi.org/10.1145/2043932.2043962.
Rastegarmoghadam, M. and Ziarati, K. (2017). Improved modeling of intelligent tutoring systems using ant colony optimization. Education and Information Technologies, 22(3):1067–1087. https://doi.org/10.1007/s10639-016-9472-2.
Rivero-Albarrán, D., Rivas-Echeverria, F., Guerra, L., Arellano, B., and Arciniegas, S. (2018). Design of a recommender system for intelligent classrooms based on multiagent systems. In International Conference on Information Technology & Systems, pages 973–982. Springer. https://doi.org/10.1007/978-3-319-73450-7_92.
Rodríguez, P., Heras, S., Palanca, J., Poveda, J. M., Duque, N., and Julián, V. (2017). An educational recommender system based on argumentation theory. AI Communications, 30(1):19–36. https://doi.org/10.3233/AIC-170724.
Slimani, H., Hamal, O., El faddouli, N.-e., Bennani, S., and Amrous, N. (2020). The hybrid recommendation of digital educational resources in a distance learning environment: the case of mooc. In Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications, pages 1–9. https://doi.org/10.1145/3419604.3419621.
Song, B., Zhuo, Y., and Li, X. (2016). A personalized intelligent tutoring system of primary mathematics based on perl. In International Conference on Swarm Intelligence, pages 609–617. Springer. https://doi.org/10.1007/978-3-319-41009-8_66.
Tambe, S. S. and Kadam, G. V. (2016). An efficient framework for e-learning recommendation system using fuzzy logic and ontology. International Research Journal of Engineering and Technology (IRJET), 3(6):2062–2067.
Vargha, A. and Delaney, H. D. (1998). The kruskal-wallis test and stochastic homogeneity. Journal of Educational and behavioral Statistics, 23(2):170–192. https://doi.org/10.3102/10769986023002170.
Wan, S. and Niu, Z. (2018). An e-learning recommendation approach based on the self-organization of learning resource. Knowledge-Based Systems, 160:71–87. https://doi.org/10.1016/j.knosys.2018.06.014.