An Approach to Group Recommendation Integrated with Collaborative Learning Techniques
Abstract
This paper presents a doctoral research proposal for group formation integrated to collaborative learning techniques. The main objective is to create and validate an automated approach to assist teachers in recommending groups of students associated with collaborative learning techniques for activities in Learning Management Systems. In particular, the approach will be based on student interaction actions with a LMS called CodeBench, through Learning Paths, and collaborative learning techniques. The doctorate began in March 2021, therefore, it will complete 21 months of development until CBIE, with completion scheduled for March 2025.
References
Barkley, E. F., Major, C. H. e Cross, K. P. (2014), Collaborative Learning Techniques: A Handbook for College Faculty, Jossey-Bass, 2nd edition.
Borges, S., Mizoguchi R., Bittencourt, I. I. e Isotani S. (2018). Group Formation in CSCL: A Review of the State of the Art, Higher Education for All. From Challenges to Novel Technology-Enhanced Solutions, A. I. Cristea, I. I. Bittencourt, and F. Lima, Cham, Switzerland, Springer International Publishing, p. 71-88.
Castro, L., Sobrinho, H., Oliveira E., Castro, A. e Gadelha, B. (2016). Um Sistema de Recomendação de Técnicas de Aprendizagem Colaborativa, In: XXVII Simpósio Brasileiro de Informática na Educação (SBIE), Uberlândia.
Felder R. M. e Brent, R. (2001). Effective strategies for cooperative learning. In Journal of Cooperation & Collaboration in College Teaching, p. 69-75. ERIC
Jagadish, D. (2014). Grouping in collaborative e-learning environment based on interaction among students, In: International Conference on Recent Trends in Information Technology, IEEE, Chennai, India.
Ounnas, A., Davis, H. C. e Millard, D. E. (2007). Towards semantic group formation. In: IEEE International Conference on Advanced Learning Technologies (ICALT), IEEE, Niigata, Japan
Ramos, D. B., Ramos, I. M. M., Gasparini, I., Oliveira, E. H. T. (2021). A New Learning Path Model for E-Learning Systems. International Journal of Distance Education Technologies (IJDET), 19(2), 34-54. http://doi.org/10.4018/IJDET.20210401.oa2
Ramos, D. B., Ramos, I. M. M., Nascimento, P. B., Amaral, G. S e Oliveira, E. H. T. (2017). Um modelo para Trilhas de Aprendizagem em um Ambiente Virtual de Aprendizagem, In: XXVIII Simpósio Brasileiro de Informática na Educação (SBIE), Recife.
Ramos, I. M. M., Ramos, D. B., Amaral, G. S., Nascimento, P. B., Gadelha, B e Oliveira, E. H. T. (2017). M-Cluster: Uma ferramenta de Recomendação para Formação de Grupos em Ambientes Virtuais de Aprendizagem, In: XXVIII Simpósio Brasileiro de Informática na Educação, Recife
Ramos, I. M. M., Ramos, D. B., Amaral, G. S., Gadelha, B. e Oliveira, E. H. T. (2018). Framework Conceitual para Formação de Grupos de Alunos utilizando Trilhas de Aprendizagem em um Ambiente Virtual de Aprendizagem, In: XXIX Simpósio Brasileiro de Informática na Educação, Fortaleza.
Ratnapala, I. P., Ragel, R. G. e Deegalla, S. (2014). Students behavioural analysis in an online learning environment using data mining, In: International Conference on Information and Automation for Sustainability, Colombo.
Romero, C. e Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. In WIREs Data Mining and Knowledge Discovery, p. 1–21. Wiley.
Romero, C e Ventura, S. (2010). Educational Data Mining: A Review of the State of the Art. In IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), p. 601-618. IEEE.
Tang, T. e McCalla, G. (2005). Smart Recommendation for an Evolving E-Learning System: Architecture and Experiment. In International Journal on E-Learning, p. 105–129. AACE
Wella e Tjhin, V. U. (2017). Exploring effective learning resources affecting student behavior on distance education, In: International Conference on Human System Interactions (HSI), IEEE, Ulsan, South Korea.
Zakrzewska, D. (2008). Cluster analysis for user’s modeling in intelligent e-learning systems, New Frontiers in Applied Artificial Intelligence. IEA/AIE 2008. Lecture Notes in Computer Science, N. T. Nguyen, L. Borzemski, A. Grzech e M. Ali, Poland, Springer, p. 209–214.
Yathongchai, C., Angskkun, T., Yathongchai, W. e Angskun, J. (2013). Learner Classification Based on Learning Behavior and Performance, In: IEEE Conference on Open Systems (ICOS), IEEE, Kuching, Malaysia.
