Um Algoritmo Exato em clusters de GPUs para o Hitting Set Aplicado à Inferência de Redes de Regulação Gênica
Resumo
Propomos um algoritmo para resolver o problema do Hitting Set (HSP), adequado para aplicações de inferência de GRNs, introduzindo inovações nas estruturas de dados e um mecanismo de ordenação que permite um descarte eficiente de candidatos que não são solução. Foram providas implementações em CPU multi-core e em clusters (homogêneos e heterogêneos) de GPU. Resultados experimentais mostraram que as otimizações ofereceram ganhos de desempenho individuais significativos e alta escalabilidade com o aumento do número de GPUs. A conjunção desses ganhos resultou em speedups acima de 60 para a parte paralela do algoritmo. Publicamos dois artigos: um em congresso (Qualis CC A1) e outro em periódico (Qualis CC A2).
Referências
Borelli, F. F., Camargo, R. Y., Martins, D. C., Stransky, B., and Rozante, L. C. (2012). Accelerating gene regulatory networks inference through gpu/cuda programming. In Computational Advances in Bio and Medical Sciences (ICCABS), 2012 IEEE 2nd International Conference on, pages 1–6. IEEE.
Cendic, B. L. (2014). A genetic algorithm for the minimum hitting set. Scientific Publications of the State University of Novi Pazar, 6(2):107.
Garey, M. R. and Johnson, D. S. (1999). Computers and Intractability - A guide to the Theory of NP-completeness. W. H. Freeman and Company.
Ideker, T. E., Thorsson, V., and Karp, R. M. (2000). Discovery of regulatory interactions through perturbation: inference and experimental design. Pacific symposium on biocomputing, 5:302–313.
Kauffman, S. A. (1969). Homeostasis and differentiation in random genetic control networks. Nature, 224(215):177–178.
Kauffman, S. A. (1993). The Origins of Order. Oxford University Press, New York.
Kolman, P. and Walen, T. (2007). Reversal distance for strings with duplicates: Linear time approximation using hitting set. The Electronic Journal of Combinatorics, 14(1):11.
Madhamshettiwar, P. B., Maetschke, S. R., Davis, M. J., Reverter, A., and Ragan, M. A. (2012). Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome medicine, 4(5):1–16.
Pearson, W. R., Robins, G., Wrege, D. E., and Zhang, T. (1996). On the primer selection problem in polymerase chain reaction experiments. Discrete Applied Mathematics, 71(1):231–246.
Ristevski, B. (2013). A survey of models for inference of gene regulatory networks. Nonlinear Analysis: Modelling and Control, 18(4):444–465.
Ruchkys, D. P. and Song, S. W. (2003). A parallel solution to infer genetic network architectures in gene expression analysis. International Journal of High Performance Computing Applications, 17(2):163–172.
Shi, H., Schmidt, B., Liu, W., and Muller-Wittig, W. (2011). Parallel mutual information estimation for inferring gene regulatory networks on gpus. BMC Research Notes, 4:189.
Shi, L. and Cai, X. (2010). An exact fast algorithm for minimum hitting set. Int. Joint Conference on Computational Science and Optimization, 1:64–67.
Steinbach, B. and Posthoff, C. (2012). Sources and obstacles for parallelization-a comprehensive exploration of the unate covering problem using both CPU and GPU. GPU Computing with Applications in Digital Logic, page 63.