The Production of Learning Analytics and Prediction of Academic Performance by Brazilian Researchers: A Systematic Literature Review
Abstract
Distance learning courses have increased its participation in Brazilian education. Expansion driven by the use of virtual environments, social inclusion, provision in underserved regions and lower cost of execution. Such courses present problematic such as: high dropout rates, failure and retention of students. Prediction is important to identify such problems and propose solutions for mitigation. This work is a Systematic Literature Review (SLR) on the Prediction of Academic Performance of studies published by Brazilian scientists in the research bases: Scopus, Science Direct, Scielo, IEEE and CEIE. Four articles were found that showed techniques, algorithms, practices and controlled studies.
References
Baker, R.; Isotani, S.; Carvalho, A. (2011) Mineração de Dados Educacionais: Oportunidades para o Brasil. Revista Brasileira de Informática na Educação, v. 19, n. 02, p. 03, 24 ago.
Barros, T. M. et al. (2019) Predictive Models for Imbalanced Data: A School Dropout Perspective. Education Sciences, v. 9, n. 4, p. 275, dez.
Brasil, P. et al. (2018) Uma Revisão Sistemática sobre o uso de Learning Analytics em ambientes virtuais de aprendizagem brasileiros. In: Ctrl+ E Congresso sobre Tecnologias Educacionais, Fortaleza-CE.
Macarini B., L. A. et al. (2019) Predicting Students Success in Blended Learning—Evaluating Different Interactions Inside Learning Management Systems. Applied Sciences, v. 9, n. 24, p. 5523, jan.
Etemadpour, R. et al. (2020) Role of absence in academic success: an analysis using visualization tools. Smart Learning Environments, v. 7, n. 1, p. 2, 7 jan.
Kitchenham, B. (2007) Guidelines for performing Systematic Literature Reviews in Software Engineering, Version 2.3, EBSE Technical Report EBSE-2007-01, Keele University and University of Durham.
Reyes, D. A. G. D. L. et al. (2019) Predição de sucesso acadêmico de estudantes: uma análise sobre a demanda por uma abordagem baseada em transfer learning. Revista Brasileira de Informática na Educação, v. 27, n. 01, p. 01, 1 jan.
Santos, R. et al. (2016) Análise de Trabalhos Sobre a Aplicação de Técnicas de Mineração de Dados Educacionais na Previsão de Desempenho Acadêmico. Anais dos Workshops do Congresso Brasileiro de Informática na Educação, v. 5, n. 1, p. 960, 10 nov.
Zhang, W. et al. (2020) Suspending Classes Without Stopping Learning: China’s Education Emergency Management Policy in the COVID-19 Outbreak. Journal of Risk and Financial Management, v. 13, n. 3, p. 55, mar.
