Dataset Anotado de Sentimentos a partir de comentários de Aplicativos Móveis
Resumo
Este trabalho apresenta um novo dataset em português brasileiro para análise de sentimentos, composto por 3.000 avaliações de usuários extraídas de 10 aplicativos populares da Google Play Store. As avaliações foram manualmente classificadas em sete emoções básicas através de um processo de anotação colaborativa e validado por múltiplos avaliadores. A análise demonstra uma predominância de emoções negativas, indicando potencial para pesquisas sobre a relação entre emoções e satisfação dos usuários. Este trabalho visa suprir a lacuna de datasets em português e impulsionar o desenvolvimento de ferramentas e pesquisas em áreas como interação humano-computador, marketing e engenharia de software.
Palavras-chave:
Dataset, Sentimentos, Emoções, Avaliações, Google Play, Anotação, Satisfação, Usuários, Aplicativos móveis, Comentários
Referências
Alcoforado, A., Ferraz, T. P., Gerber, R., Bustos, E., Oliveira, A. S., Veloso, B. M., Siqueira, F. L., e Costa, A. H. R. (2022). Zeroberto: Leveraging zero-shot text classification by topic modeling. Em International Conference on Computational Processing of the Portuguese Language, páginas 125–136. Springer.
Almeida, M. (2023). Pandas python: o que é, para que serve e como instalar.
Amaral, F. (2016). Introdução à ciência de dados: mineração de dados e big data. Alta Books Editora.
Barbosa, M., Nakamura, W., Valle, P., Guerino, G., Finger, A., Lunardi, G. M., e Silva, W. (2022). Ux of chatbots: An exploratory study on acceptance of user experience evaluation methods. Em ICEIS, volume 2, páginas 355–363.
Fabro, C. (2021). Google Play Store: conheça seis curiosidades sobre a loja de aplicativos. [link]. Acessado em: 27/08/2024.
Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological bulletin, 76(5):378.
Freire, J., Costa, L. H., Dorneles, C., e Brandão, M. (2023). Airbset: Um conjunto de dados com imóveis brasileiros do airbnb e respectivas avaliações. Em Anais do V Dataset Showcase Workshop, páginas 79–86, Porto Alegre, RS, Brasil. SBC.
Guzman, E. e Maalej, W. (2014). How do users like this feature? a fine grained sentiment analysis of app reviews. Em 2014 IEEE 22nd international requirements engineering conference (RE), páginas 153–162. Ieee.
Lunardi, G. M. (2019). Representing the filter bubble: Towards a model to diversification in news. Em International Conference on Conceptual Modeling, páginas 239–246. Springer, Cham.
Lunardi, G. M., Machado, G. M., Al Machot, F., Maran, V., Machado, A., Mayr, H. C., Shekhovtsov, V. A., e de Oliveira, J. P. M. (2018). Probabilistic ontology reasoning in ambient assistance: Predicting human actions. Em 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA), páginas 593–600.
Maalej, W. e Nabil, H. (2015). Bug report, feature request, or simply praise? on automatically classifying app reviews. Em 2015 IEEE 23rd international requirements engineering conference (RE), páginas 116–125. IEEE.
Mora, N. e Lavid-López, J. (2018). Building an annotated dataset of app store reviews with appraisal features in english and spanish. Em Proceedings of the Second Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media, páginas 16–24.
Moreira, L. S., Lunardi, G. M., de Oliveira Ribeiro, M., Silva, W., e Basso, F. P. (2023). A study of algorithm-based detection of fake news in brazilian election: Is bert the best. IEEE Latin America Transactions, 21(8):897–903.
Motger, Q., Franch, X., Gervasi, V., e Marco, J. (2024). Unveiling competition dynamics in mobile app markets through user reviews. Em International Working Conference on Requirements Engineering: Foundation for Software Quality, páginas 251–266. Springer.
Nakamura, W. T., de Oliveira, E. C., de Oliveira, E. H., Redmiles, D., e Conte, T. (2022). What factors affect the ux in mobile apps? a systematic mapping study on the analysis of app store reviews. Journal of Systems and Software, 193:111462.
Oliver, A. (2020). Human translation and machine translation: Specificities, uses, advantages and disadvantages.
Quiroga, F. L. e Bessa, R. d. (2024). A educação em tempos de smartphones e redes sociais: por uma crítica permanente no enfrentamento da dessubjetivação e monitoramento. Texto Livre, 17:e51341.
Sadiq, S., Umer, M., Ullah, S., Mirjalili, S., Rupapara, V., e Nappi, M. (2021). Discrepancy detection between actual user reviews and numeric ratings of google app store using deep learning. Expert Systems with Applications, 181:115111.
Saif, H., Fernandez, M., He, Y., e Alani, H. (2013). Evaluation datasets for twitter sentiment analysis: a survey and a new dataset, the sts-gold.
Sanches, M., de Sá, J., Foerste, H., Souza, R., Reis, J. D., e Villas, L. (2022). Textual datasets for portuguese-brazilian language models. Em Anais do IV Dataset Showcase Workshop, páginas 1–12, Porto Alegre, RS, Brasil. SBC.
Saputra, K. E. et al. (2023). Multilabel multiclass sentiment and emotion dataset from indonesian mobile application review. Data in Brief, 50:109576.
Siqueira, V., M. Lunardi, G., e Silva, W. (2024). A dataset of polarities and emotions from brazilian portuguese play store reviews.
Statista (2023). Market share of mobile operating systems in brazil from january 2019 to may 2023. [link]. Acessado em: 27/08/2024.
Almeida, M. (2023). Pandas python: o que é, para que serve e como instalar.
Amaral, F. (2016). Introdução à ciência de dados: mineração de dados e big data. Alta Books Editora.
Barbosa, M., Nakamura, W., Valle, P., Guerino, G., Finger, A., Lunardi, G. M., e Silva, W. (2022). Ux of chatbots: An exploratory study on acceptance of user experience evaluation methods. Em ICEIS, volume 2, páginas 355–363.
Fabro, C. (2021). Google Play Store: conheça seis curiosidades sobre a loja de aplicativos. [link]. Acessado em: 27/08/2024.
Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological bulletin, 76(5):378.
Freire, J., Costa, L. H., Dorneles, C., e Brandão, M. (2023). Airbset: Um conjunto de dados com imóveis brasileiros do airbnb e respectivas avaliações. Em Anais do V Dataset Showcase Workshop, páginas 79–86, Porto Alegre, RS, Brasil. SBC.
Guzman, E. e Maalej, W. (2014). How do users like this feature? a fine grained sentiment analysis of app reviews. Em 2014 IEEE 22nd international requirements engineering conference (RE), páginas 153–162. Ieee.
Lunardi, G. M. (2019). Representing the filter bubble: Towards a model to diversification in news. Em International Conference on Conceptual Modeling, páginas 239–246. Springer, Cham.
Lunardi, G. M., Machado, G. M., Al Machot, F., Maran, V., Machado, A., Mayr, H. C., Shekhovtsov, V. A., e de Oliveira, J. P. M. (2018). Probabilistic ontology reasoning in ambient assistance: Predicting human actions. Em 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA), páginas 593–600.
Maalej, W. e Nabil, H. (2015). Bug report, feature request, or simply praise? on automatically classifying app reviews. Em 2015 IEEE 23rd international requirements engineering conference (RE), páginas 116–125. IEEE.
Mora, N. e Lavid-López, J. (2018). Building an annotated dataset of app store reviews with appraisal features in english and spanish. Em Proceedings of the Second Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media, páginas 16–24.
Moreira, L. S., Lunardi, G. M., de Oliveira Ribeiro, M., Silva, W., e Basso, F. P. (2023). A study of algorithm-based detection of fake news in brazilian election: Is bert the best. IEEE Latin America Transactions, 21(8):897–903.
Motger, Q., Franch, X., Gervasi, V., e Marco, J. (2024). Unveiling competition dynamics in mobile app markets through user reviews. Em International Working Conference on Requirements Engineering: Foundation for Software Quality, páginas 251–266. Springer.
Nakamura, W. T., de Oliveira, E. C., de Oliveira, E. H., Redmiles, D., e Conte, T. (2022). What factors affect the ux in mobile apps? a systematic mapping study on the analysis of app store reviews. Journal of Systems and Software, 193:111462.
Oliver, A. (2020). Human translation and machine translation: Specificities, uses, advantages and disadvantages.
Quiroga, F. L. e Bessa, R. d. (2024). A educação em tempos de smartphones e redes sociais: por uma crítica permanente no enfrentamento da dessubjetivação e monitoramento. Texto Livre, 17:e51341.
Sadiq, S., Umer, M., Ullah, S., Mirjalili, S., Rupapara, V., e Nappi, M. (2021). Discrepancy detection between actual user reviews and numeric ratings of google app store using deep learning. Expert Systems with Applications, 181:115111.
Saif, H., Fernandez, M., He, Y., e Alani, H. (2013). Evaluation datasets for twitter sentiment analysis: a survey and a new dataset, the sts-gold.
Sanches, M., de Sá, J., Foerste, H., Souza, R., Reis, J. D., e Villas, L. (2022). Textual datasets for portuguese-brazilian language models. Em Anais do IV Dataset Showcase Workshop, páginas 1–12, Porto Alegre, RS, Brasil. SBC.
Saputra, K. E. et al. (2023). Multilabel multiclass sentiment and emotion dataset from indonesian mobile application review. Data in Brief, 50:109576.
Siqueira, V., M. Lunardi, G., e Silva, W. (2024). A dataset of polarities and emotions from brazilian portuguese play store reviews.
Statista (2023). Market share of mobile operating systems in brazil from january 2019 to may 2023. [link]. Acessado em: 27/08/2024.
Publicado
14/10/2024
Como Citar
SIQUEIRA, Vitor X.; HENTGES COSTA, Ricardo Luiz; SOARES, Tales Schifelbein; LUNARDI, Gabriel M.; SILVA, Williamson.
Dataset Anotado de Sentimentos a partir de comentários de Aplicativos Móveis. In: DATASET SHOWCASE WORKSHOP (DSW), 6. , 2024, Florianópolis/SC.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 65-76.
DOI: https://doi.org/10.5753/dsw.2024.243926.