A Temporal Approach to Customer Churn Prediction: A Case Study for Financial Services
Resumo
Modelos de previsão de desligamento de clientes visam detectar clientes com alta probabilidade de cancelamento do contrato, com base no uso dos serviços oferecidos. Propomos uma abordagem temporal para a etapa de rotulagem, baseada na redução da frequência de uso dos serviços, por meio do comportamento de cada cliente. Também propomos uma arquitetura de rede neural temporal para a tarefa. A abordagem foi avaliada em um conjunto de dados reais, fornecido por uma empresa brasileira do setor financeiro. A rede neural convolucional temporal alcançou uma acurácia de 82, 63%, uma sensibilidade de 61, 5% e uma precisão de 41, 58%, superando outros classificadores tradicionais (XG-Boost e Floresta Aleatória).Referências
Ahn, D., Lee, D., and Hosanagar, K. (2020). Interpretable deep learning approach to churn management. Available at SSRN 3981160.
Amin, A., Khan, C., Ali, I., and Anwar, S. (2014). Customer churn prediction in telecommunication industry: With and without counter-example. In 2014 European Network Intelligence Conference, pages 134-137.
Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:1803.01271.
Caigny, A. D., Coussement, K., and Bock, K. W. D. (2018). A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. European Journal of Operational Research, 269(2):760-772.
Caigny, A. D., Coussement, K., Bock, K. W. D., and Lessmann, S. (2020). Incorporating textual information in customer churn prediction models based on a convolutional neural network. International Journal of Forecasting, 36(4):1563-1578.
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16:321-357.
Chen, Z.-Y., Fan, Z.-P., and Sun, M. (2012). A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data. European Journal of Operational Research, 223(2):461-472.
Chouiekh, A. et al. (2020). Deep convolutional neural networks for customer churn prediction analysis. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 14(1):1-16.
Coussement, K. and De Bock, K. W. (2013). Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning. Journal of Business Research, 66(9):1629-1636.
Devriendt, F., Berrevoets, J., and Verbeke, W. (2021). Why you should stop predicting customer churn and start using uplift models. Information Sciences, 548:497-515.
Gregory, B. (2018). Predicting customer churn: Extreme gradient boosting with temporal data. arXiv:1802.03396.
Hadden, J., Tiwari, A., Roy, R., and Ruta, D. (2007). Computer assisted customer churn management: State-of-the-art and future trends. Computers & Operations Research, 34(10):2902-2917.
Lima, E., Mues, C., and Baesens, B. (2009). Domain knowledge integration in data mining using decision tables: case studies in churn prediction. Journal of the Operational Research Society, 60(8):1096-1106.
Mena, C. G., De Caigny, A., Coussement, K., De Bock, K. W., and Lessmann, S. (2019). Churn prediction with sequential data and deep neural networks. a comparative analysis. arXiv:1909.11114.
Neslin, S. A., Gupta, S., Kamakura, W., Lu, J., and Mason, C. H. (2006). Defection detection: Measuring and understanding the predictive accuracy of customer churn models. Journal of Marketing Research, 43(2):204-211.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830.
Remy, P. (2020). Temporal convolutional networks for keras. https://github.com/philipperemy/keras-tcn.
Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., and Le, Q. V. (2019). Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2820-2828.
Ullah, I., Raza, B., Malik, A. K., Imran, M., Islam, S. U., and Kim, S. W. (2019). A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector. IEEE Access, 7:60134-60149.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Å., and Polosukhin, I. (2017). Attention is all you need. arXiv:1706.03762.
Verbeke, W., Martens, D., Mues, C., and Baesens, B. (2011). Building comprehensible customer churn prediction models with advanced rule induction techniques. Expert Systems with Applications, 38(3):2354-2364.
Zhong, J. and Li, W. (2019). Predicting customer churn in the telecommunication industry by analyzing phone call transcripts with convolutional neural networks. In Proceedings of the 2019 3rd International Conference on Innovation in Artificial Intelligence, pages 55-59.
Zhuang, Y. (2018). Research on e-commerce customer churn prediction based on improved value model and xg-boost algorithm. Management Science and Engineering, 12(3):51-56.
Amin, A., Khan, C., Ali, I., and Anwar, S. (2014). Customer churn prediction in telecommunication industry: With and without counter-example. In 2014 European Network Intelligence Conference, pages 134-137.
Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:1803.01271.
Caigny, A. D., Coussement, K., and Bock, K. W. D. (2018). A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. European Journal of Operational Research, 269(2):760-772.
Caigny, A. D., Coussement, K., Bock, K. W. D., and Lessmann, S. (2020). Incorporating textual information in customer churn prediction models based on a convolutional neural network. International Journal of Forecasting, 36(4):1563-1578.
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16:321-357.
Chen, Z.-Y., Fan, Z.-P., and Sun, M. (2012). A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data. European Journal of Operational Research, 223(2):461-472.
Chouiekh, A. et al. (2020). Deep convolutional neural networks for customer churn prediction analysis. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 14(1):1-16.
Coussement, K. and De Bock, K. W. (2013). Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning. Journal of Business Research, 66(9):1629-1636.
Devriendt, F., Berrevoets, J., and Verbeke, W. (2021). Why you should stop predicting customer churn and start using uplift models. Information Sciences, 548:497-515.
Gregory, B. (2018). Predicting customer churn: Extreme gradient boosting with temporal data. arXiv:1802.03396.
Hadden, J., Tiwari, A., Roy, R., and Ruta, D. (2007). Computer assisted customer churn management: State-of-the-art and future trends. Computers & Operations Research, 34(10):2902-2917.
Lima, E., Mues, C., and Baesens, B. (2009). Domain knowledge integration in data mining using decision tables: case studies in churn prediction. Journal of the Operational Research Society, 60(8):1096-1106.
Mena, C. G., De Caigny, A., Coussement, K., De Bock, K. W., and Lessmann, S. (2019). Churn prediction with sequential data and deep neural networks. a comparative analysis. arXiv:1909.11114.
Neslin, S. A., Gupta, S., Kamakura, W., Lu, J., and Mason, C. H. (2006). Defection detection: Measuring and understanding the predictive accuracy of customer churn models. Journal of Marketing Research, 43(2):204-211.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830.
Remy, P. (2020). Temporal convolutional networks for keras. https://github.com/philipperemy/keras-tcn.
Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., and Le, Q. V. (2019). Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2820-2828.
Ullah, I., Raza, B., Malik, A. K., Imran, M., Islam, S. U., and Kim, S. W. (2019). A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector. IEEE Access, 7:60134-60149.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Å., and Polosukhin, I. (2017). Attention is all you need. arXiv:1706.03762.
Verbeke, W., Martens, D., Mues, C., and Baesens, B. (2011). Building comprehensible customer churn prediction models with advanced rule induction techniques. Expert Systems with Applications, 38(3):2354-2364.
Zhong, J. and Li, W. (2019). Predicting customer churn in the telecommunication industry by analyzing phone call transcripts with convolutional neural networks. In Proceedings of the 2019 3rd International Conference on Innovation in Artificial Intelligence, pages 55-59.
Zhuang, Y. (2018). Research on e-commerce customer churn prediction based on improved value model and xg-boost algorithm. Management Science and Engineering, 12(3):51-56.
Publicado
28/11/2022
Como Citar
ALMEIDA, Marcus; MOTA, Mariana; SOUZA, Wellington; NICOLAU, Marcos; LUZ, Eduardo; MOREIRA, Gladston.
A Temporal Approach to Customer Churn Prediction: A Case Study for Financial Services. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 19. , 2022, Campinas/SP.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2022
.
p. 83-94.
ISSN 2763-9061.
DOI: https://doi.org/10.5753/eniac.2022.227571.