A PSO Application in Electric Power Quality

  • Ricardo de Andrade Lira Rabêlo USP
  • Daniel Barbosa Universidade Salvador
  • Ivan Nunes da Silva USP
  • Mário Oleskovicz USP
  • Denis Vinicius Coury USP

Abstract


Electrical Power Systems Quality refers to any problem observed in the voltage, current or frequency. The voltage and current waveforms from an Electrical Power System (EPS) are not considered pure sinusoids due to the presence of, amongst others, the harmonic distortion. This work presents an approach based on the Particle Swarm Optimization (PSO) method for the harmonic component estimation in an EPS. PSO is a technique of search/optimization modeling the social behavior observed in many species of birds, schooling fish and even human social behavior. The technique uses a population of particles to search inside a multidimensional search space. The objective of the PSO is to adjust the speed and position of each particle, seeking for the best solution within the search space. The results demonstrate that the method can precisely identify the harmonic components in the distorted waveforms and it shows considerable advantages if compared to the most common algorithm for this purpose, the Discrete Fourier Transform (DFT).

References

Abido, M. (2002). Optimal design of power-system stabilizers using particle swarm optimization. IEEE Transactions on Energy Conversion, 17(3):406–413.

AlRashidi, M. and El-Hawary, M. (2009). A survey of particle swarm optimization applications in electric power systems. Evolutionary Computation, IEEE Transactions on, 13(4):913 –918.

Arrilaga, J., Smith, B. C., Watson, N. R., and Wood, A. R. (1997). Power System Harmonic Analysis. John Wiley & Sons, New Zealand.

Baggini, A. (2008). Handbook of Power Quality. Wiley.

Chen, C. I., Chang, G. W., Hong, R. C., and Li, H. M. (2010). Extended real model of kalman filter for time-varying harmonics estimation. IEEE Transactions on Power Delivery, 25(1):17–26.

Das, T. and Venayagamoorthy, G. (2006). Optimal design of power system stabilizers using a small population based PSO. In IEEE Power Engineering Society General Meeting, page 7. IEEE.

Dugan, R. C., Santoso, S., McGranaghan, M. F., and Beaty, H. W. (2003). Electrical Power Systems Quality. McGraw–Hill, New York, 2 edition.

Eberhart, R. and Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pages 39–43. IEEE.

Eberhart, R. and Shi, Y. (1998). Comparison between genetic algorithms and particle swarm optimization. In Proceedings of the 7th International Conference on Evolutionary Programming, pages 611–616. Springer-Verlag.

Eberhart, R., Shi, Y., and Kennedy, J. (2001). Swarm Intelligence. Morgan Kaufmann.

Fogel, D. (2006). Evolutionary Computation: toward a new Philosophy of Machine Intelligence. Wiley-IEEE Press.

Gaing, Z. (2004). A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Transactions on Energy Conversion, 19(2):384–391.

Girgis, A., Chang, W., and Makram, E. (1991). A digital recursive measurement scheme for online tracking of power system harmonics. IEEE Transactions on Power Delivery, 6(3):1153 –1160.

Kamwa, I. and Grondin, R. (1992). Fast adaptive schemes for tracking voltage phasor and local frequency in power transmission and distribution systems. IEEE Transactions on Power Delivery, 7(2):789–795.

Kennedy, J. and Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks, volume 4, pages 1942–1948. Perth, Australia.

Lamin, H., Mattar, C. A. C., and de Sousa, R. E. F. (2010). Procedimentos de distribuição – PRODIST: destaques, inovações e a importância para o setor elétrico brasileiro. In The International Congress on Electricity Distribution (CIDEL), Argentina.

Lin, H. C. (2007). Intelligent neural network-based fast power system harmonic detection. IEEE Transactions on Industrial Electronics, 54(1):43–52.

Macedo, R. A., Silva, D. d., Coury, D. V., and Carvalho, A. C. P. L. F. d. (2002). A new technique based on genetic algorithms for tracking of power system harmonics. In VII Brazilian Symposium on Neural Networks, pages 7–12.

Madisetti, V. K. and Williams, D. B., editors (1998). Digital Signal Processing Handbook. CRC Press. ISBN-13: 978-0849385728.

Sabin, D. D., Brooks, D., and Sundaram, A. (1999). Indices for assessing harmonic distortion from power quality measurements: definitions and benchmark data. IEEE Transactions on Power Delivery, 14(2):489 –496.

Serapião, A. B. S. (2009). Fundamentos de otimização por inteligência de enxames: uma visão geral. Sba: Controle & Automação Sociedade Brasileira de Automatica, 20:271–304.

Shi, Y. and Eberhart, R. (1998). A modified particle swarm optimizer. In IEEE World Congress on Computational Intelligence Evolutionary Computation Proceedings, pages 69–73. IEEE.

Souza, S. A. d. (2008). Algoritmos genéticos aplicados à proteção e estimação de harmônicos em sistemas elétricos de potência. PhD thesis, Escola de Engenharia de São Carlos (EESC), São Carlos.

Stroustrup, B. (2000). A Linguagem de Programação C++. Bookman.
Published
2011-07-19
RABÊLO, Ricardo de Andrade Lira; BARBOSA, Daniel; SILVA, Ivan Nunes da; OLESKOVICZ, Mário; COURY, Denis Vinicius. A PSO Application in Electric Power Quality. In: NATIONAL MEETING ON ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE (ENIAC), 8. , 2011, Natal/RN. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2011 . p. 761-772. ISSN 2763-9061.