Enhancing E-Commerce with a RAG-Powered Conversational Recommender System
Resumo
Conversational recommender systems have emerged as a promising approach to enhancing user experience in e-commerce by enabling interactive and personalized product discovery. This paper proposes a conversational recommender system for e-commerce that employs retrieval-augmented generation (RAG) to improve product recommendations based on natural language queries. Experiments were conducted using the ESCI-S dataset, an enriched version of the Amazon ESCI shopping queries dataset, to evaluate embedding models and large language models. The goal of this study is to assess the effectiveness of an RAG-based conversational recommender system and to identify optimal configurations for enhanced performance in e-commerce applications.Referências
Benita, J., Tej, K. V. C., Kumar, E. V., Subbarao, G. V., and Venkatesh, C. (2024). Implementation of retrieval-augmented generation (rag) in chatbot systems for enhanced real-time customer support in e-commerce. In 2024 3rd International Conference on Automation, Computing and Renewable Systems (ICACRS), pages 1381–1388. IEEE.
Deldjoo, Y., He, Z., McAuley, J., Korikov, A., Sanner, S., Ramisa, A., Vidal, R., Sathiamoorthy, M., Kasirzadeh, A., and Milano, S. (2024). A review of modern recommender systems using generative models (gen-recsys). In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 6448–6458.
Fan, W., Ding, Y., Ning, L., Wang, S., Li, H., Yin, D., Chua, T.-S., and Li, Q. (2024). A survey on rag meeting llms: Towards retrieval-augmented large language models. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 6491–6501.
Feng, Y., Liu, S., Xue, Z., Cai, Q., Hu, L., Jiang, P., Gai, K., and Sun, F. (2023). A large language model enhanced conversational recommender system. arXiv preprint arXiv:2308.06212.
Gao, Y., Sheng, T., Xiang, Y., Xiong, Y., Wang, H., and Zhang, J. (2023). Chat-rec: Towards interactive and explainable llms-augmented recommender system. arXiv preprint arXiv:2303.14524.
Hu, X., Turel, O., Chen, W., Shi, J., and He, Q. (2023). The effect of trait-state anxiety on choice overload: the mediating role of choice difficulty. DECISION, 50.
Iglesias-Pradas, S. and Acquila-Natale, E. (2023). The future of e-commerce: Overview and prospects of multichannel and omnichannel retail. Journal of Theoretical and Applied Electronic Commerce Research, 18(1):656–667.
Jannach, D., Manzoor, A., Cai, W., and Chen, L. (2021). A survey on conversational recommender systems. ACM Computing Surveys (CSUR), 54(5):1–36.
Jing, Z., Su, Y., Han, Y., Yuan, B., Xu, H., Liu, C., Chen, K., and Zhang, M. (2024). When large language models meet vector databases: A survey. arXiv preprint arXiv:2402.01763.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel, T., et al. (2020). Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:9459–9474.
Lian, J., Lei, Y., Huang, X., Yao, J., Xu, W., and Xie, X. (2024). Recai: Leveraging large language models for next-generation recommender systems. In Companion Proceedings of the ACM on Web Conference 2024, WWW ’24, page 1031–1034, New York, NY, USA. Association for Computing Machinery.
Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Akhtar, N., Barnes, N., and Mian, A. (2023). A comprehensive overview of large language models. arXiv preprint arXiv:2307.06435.
Nguyen, H., Tran, T., Nham, P., Nguyen, N., and Duy Anh, L. (2024). Ai chatbot for tourist recommendations: A case study in vietnam. Applied Computer Systems, 28:232–244.
Patro, S. G. K., Mishra, B. K., Panda, S. K., Kumar, R., Long, H. V., and Taniar, D. (2023). Cold start aware hybrid recommender system approach for e-commerce users. Soft Computing, 27(4):2071–2091.
Reddy, C. K., Màrquez, L., Valero, F., Rao, N., Zaragoza, H., Bandyopadhyay, S., Biswas, A., Xing, A., and Subbian, K. (2022). Shopping queries dataset: A large-scale esci benchmark for improving product search. arXiv preprint arXiv:2206.06588.
Roy, D. and Dutta, M. (2022). A systematic review and research perspective on recommender systems. Journal of Big Data, 9(1):59.
Xiao, G., Wu, J., and Tseng, S.-P. (2024). A novel e-commerce recommendation system based on rag and pretrained large model. In 2024 International Conference on Orange Technology (ICOT), pages 1–4.
Deldjoo, Y., He, Z., McAuley, J., Korikov, A., Sanner, S., Ramisa, A., Vidal, R., Sathiamoorthy, M., Kasirzadeh, A., and Milano, S. (2024). A review of modern recommender systems using generative models (gen-recsys). In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 6448–6458.
Fan, W., Ding, Y., Ning, L., Wang, S., Li, H., Yin, D., Chua, T.-S., and Li, Q. (2024). A survey on rag meeting llms: Towards retrieval-augmented large language models. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 6491–6501.
Feng, Y., Liu, S., Xue, Z., Cai, Q., Hu, L., Jiang, P., Gai, K., and Sun, F. (2023). A large language model enhanced conversational recommender system. arXiv preprint arXiv:2308.06212.
Gao, Y., Sheng, T., Xiang, Y., Xiong, Y., Wang, H., and Zhang, J. (2023). Chat-rec: Towards interactive and explainable llms-augmented recommender system. arXiv preprint arXiv:2303.14524.
Hu, X., Turel, O., Chen, W., Shi, J., and He, Q. (2023). The effect of trait-state anxiety on choice overload: the mediating role of choice difficulty. DECISION, 50.
Iglesias-Pradas, S. and Acquila-Natale, E. (2023). The future of e-commerce: Overview and prospects of multichannel and omnichannel retail. Journal of Theoretical and Applied Electronic Commerce Research, 18(1):656–667.
Jannach, D., Manzoor, A., Cai, W., and Chen, L. (2021). A survey on conversational recommender systems. ACM Computing Surveys (CSUR), 54(5):1–36.
Jing, Z., Su, Y., Han, Y., Yuan, B., Xu, H., Liu, C., Chen, K., and Zhang, M. (2024). When large language models meet vector databases: A survey. arXiv preprint arXiv:2402.01763.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel, T., et al. (2020). Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:9459–9474.
Lian, J., Lei, Y., Huang, X., Yao, J., Xu, W., and Xie, X. (2024). Recai: Leveraging large language models for next-generation recommender systems. In Companion Proceedings of the ACM on Web Conference 2024, WWW ’24, page 1031–1034, New York, NY, USA. Association for Computing Machinery.
Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Akhtar, N., Barnes, N., and Mian, A. (2023). A comprehensive overview of large language models. arXiv preprint arXiv:2307.06435.
Nguyen, H., Tran, T., Nham, P., Nguyen, N., and Duy Anh, L. (2024). Ai chatbot for tourist recommendations: A case study in vietnam. Applied Computer Systems, 28:232–244.
Patro, S. G. K., Mishra, B. K., Panda, S. K., Kumar, R., Long, H. V., and Taniar, D. (2023). Cold start aware hybrid recommender system approach for e-commerce users. Soft Computing, 27(4):2071–2091.
Reddy, C. K., Màrquez, L., Valero, F., Rao, N., Zaragoza, H., Bandyopadhyay, S., Biswas, A., Xing, A., and Subbian, K. (2022). Shopping queries dataset: A large-scale esci benchmark for improving product search. arXiv preprint arXiv:2206.06588.
Roy, D. and Dutta, M. (2022). A systematic review and research perspective on recommender systems. Journal of Big Data, 9(1):59.
Xiao, G., Wu, J., and Tseng, S.-P. (2024). A novel e-commerce recommendation system based on rag and pretrained large model. In 2024 International Conference on Orange Technology (ICOT), pages 1–4.
Publicado
29/09/2025
Como Citar
VALLE, Danilo Xavier; OLIVEIRA, Hilário Tomaz Alves de.
Enhancing E-Commerce with a RAG-Powered Conversational Recommender System. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 22. , 2025, Fortaleza/CE.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 129-140.
ISSN 2763-9061.
DOI: https://doi.org/10.5753/eniac.2025.11835.
