Predictive Modeling of Real Estate Prices Using Machine Learning

  • Atílio Cardoso Azevedo UFPA
  • Reginaldo Cordeiro dos Santos Filho UFPA

Abstract


Determining the value of a property is a complex task due to the wide range of factors that influence its pricing, such as location, size, number of rooms, and other relevant attributes. With the objective of simplifying the pricing process, this article proposes the use of Machine Learning Algorithms capable of estimating a property’s value based on its physical and locational characteristics. The algorithms were trained on a dataset containing online listings of properties for sale in the city of Belém, Pará, during the period from December 2023 to January 2025. The results of this proof of concept indicate that the Random Forest Regressor algorithm achieved the best performance, with an R² of 0.902 and a MAPE of 26%.

References

Afonso, B., Melo, L., Oliveira, W., Sousa, S., and Berton, L. (2019). Housing prices prediction with a deep learning and random forest ensemble. In Anais do XVI Encontro Nacional de Inteligência Artificial e Computacional, pages 389–400, Porto Alegre, RS, Brasil. SBC.

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., and Wirth, R. (2000). CRISP-DM 1.0: Step-by-step Data Mining Guide. SPSS Inc., Chicago, IL. [link].

Dabreo, S., Rodrigues, S., Rodrigues, V., Shah, P., Student, F., and Conceicao (2021). Real estate price prediction.

Firpo, R. (2024). Como a inteligência artificial começou a revolucionar o mercado de imóveis. [link]. Acessado em 30-03-2025.

IBRESP (2024). Confira os bairros com imóveis mais valorizados em belém. [link]. Acessado em: 07-02-2025.

Mysore, S., Muthineni, A., Nandikandi, V., and Behera, S. (2022). Prediction of house prices using machine learning. International Journal for Research, 10.

Panchal, Y., Mer, M., and Ghosh, A. (2022). Residential property price prediction using machine learning: Makansetu. In 2022 International Seminar on Application for Technology of Information and Communication (iSemantic), pages 257–262.

Truong, Q. H., Nguyen, M. V., Dang, H., and Mei, B. (2020). Housing price prediction via improved machine learning techniques. Miscellaneous, 174:433–442.

Wang, F., Zou, Y., Zhang, H., and Shi, H. (2019). House price prediction approach based on deep learning and arima model. In 2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT), pages 303–307.

Wilson, I. (2022). Censo 2022 - guamá é o bairro mais populoso de belém. [link]. Acessado em: 07-02-2025.

Zaki, J., Nayyar, A., Dalal, S., and Ali, Z. H. (2022). House price prediction using hedonic pricing model and machine learning techniques. Wiley Online Library, 34(27).
Published
2025-09-29
AZEVEDO, Atílio Cardoso; SANTOS FILHO, Reginaldo Cordeiro dos. Predictive Modeling of Real Estate Prices Using Machine Learning. In: NATIONAL MEETING ON ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE (ENIAC), 22. , 2025, Fortaleza/CE. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 558-568. ISSN 2763-9061. DOI: https://doi.org/10.5753/eniac.2025.13885.