A Hybrid Approach Combining CNN and Ensemble Algorithms for Dermoscopic Image Classification
Abstract
This work presents a hybrid approach for the classification of pigmented skin lesions, including skin cancer types, in dermoscopic images. The technique combines convolutional neural networks (CNNs) as feature extractors and ensemble algorithms as classifiers, along with the introduction of two distinct preprocessing stages for data augmentation. The first stage occurs before training the CNNs, while the second is applied prior to training the classifiers. Experiments conducted with the HAM10000 dataset demonstrate the method’s effectiveness, achieving overall F1-Scores above 80%. Additionally, the study suggests directions for future work aimed at improving the method.References
Afza, F., Sharif, M., Khan, M., Tariq, U., Yong, H.-S., and Cha, J. (2022). Multiclass skin lesion classification using hybrid deep features selection and extreme learning machine. Sensors, 22(3):799.
Ajiboye, A. O. (2024). Hybrid skin lesion detection integrating cnn and xgboost for accurate diagnosis. International Journal of Computer (IJC), 53(1):14–71.
Alenezi, F., Armghan, A., and Polat, K. (2023). A multi-stage melanoma recognition framework with deep residual neural network and hyperparameter optimization-based decision support in dermoscopy images. Expert Systems with Applications, 215:119352.
Benjdira, B., Ali, M., Koubaa, A., Ammar, A., and Boulila, W. (2024). Dm-ahr: A self-supervised conditional diffusion model for ai-generated hairless imaging for enhanced skin diagnosis applications. Cancers (Basel), 16(17):2947. Published: 2024 Aug 23.
Benyahia, S., Meftah, B., and Lézoray, O. (2022). Multi-features extraction based on deep learning for skin lesion classification. Tissue and Cell, 74:101701.
Brancaccio, G., Balato, A., Malvehy, J., Puig, S., Argenziano, G., and Kittler, H. (2024). Artificial intelligence in skin cancer diagnosis: A reality check. Journal of Investigative Dermatology, 144(3):492–499.
Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., and Kalinin, A. A. (2020). Albumentations: Fast and flexible image augmentations. Information, 11(2).
Chang, C.-C., Li, Y.-Z., Wu, H.-C., and Tseng, M.-H. (2022). Melanoma detection using xgb classifier combined with feature extraction and k-means smote techniques. Diagnostics, 12(7):1747. Published: 19 July 2022.
Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1800–1807.
Cruz, R. M., Sabourin, R., and Cavalcanti, G. D. C. (2018). Dynamic classifier selection: Recent advances and perspectives. Information Fusion, 41:195–216.
Khan, M. A., Sharif, M., Akram, T., Damaševičius, R., and Maskeliūnas, R. (2021). Skin lesion segmentation and multiclass classification using deep learning features and improved moth flame optimization. Diagnostics, 11(5):811. Published: 29 April 2021.
Menegola, A., Fornaciali, M., Pires, R., Bittencourt, F. V., Avila, S., and Valle, E. (2017). Knowledge transfer for melanoma screening with deep learning. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pages 297–300.
Roy, A., Cruz, R. M., Sabourin, R., and Cavalcanti, G. D. (2018). A study on combining dynamic selection and data preprocessing for imbalance learning. Neurocomputing, 286:179–192.
Shetty, B., Fernandes, R., Rodrigues, A. P., Chengoden, R., Bhattacharya, S., and Lakshmanna, K. (2022). Skin lesion classification of dermoscopic images using machine learning and convolutional neural network. Scientific Reports, 12(1):18134.
Spolaôr, N., Lee, H. D., Takaki, W. S. R., Coy, C. S. R., and Wu, F. C. (2024). Avaliação de variações da rede profunda efficientnet em bases dermoscópicas. Journal of Health Informatics, 16(especial).
Sá, J., Ensina, L., and Jeronymo, D. (2024). Aplicação de redes de aprendizado profundo e algoritmos de aprendizado de máquina para classificar imagens de câncer de pele. In Anais do XXIV Simpósio Brasileiro de Computação Aplicada à Saúde, pages 651–656, Porto Alegre, RS, Brasil. SBC.
Tschandl, P., Rosendahl, C., and Kittler, H. (2018). The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data, 5(1):180161.
Yanchatuña, O. P., Pereira, J. P., Pila, K. O., Vásquez, P. A., Veintimilla, K. S., Villalba-Meneses, G. F., Alvarado-Cando, O., and Almeida-Galárraga, D. (2021). Skin lesion detection and classification using convolutional neural network for deep feature extraction and support vector machine. International Journal on Advanced Science, Engineering and Information Technology, 11(3):1260–1267.
Zanddizari, H., Nguyen, N., Zeinali, B., and Chang, J. M. (2021). A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing, 59(5):1123–1131. Epub 2021 Apr 26.
Ajiboye, A. O. (2024). Hybrid skin lesion detection integrating cnn and xgboost for accurate diagnosis. International Journal of Computer (IJC), 53(1):14–71.
Alenezi, F., Armghan, A., and Polat, K. (2023). A multi-stage melanoma recognition framework with deep residual neural network and hyperparameter optimization-based decision support in dermoscopy images. Expert Systems with Applications, 215:119352.
Benjdira, B., Ali, M., Koubaa, A., Ammar, A., and Boulila, W. (2024). Dm-ahr: A self-supervised conditional diffusion model for ai-generated hairless imaging for enhanced skin diagnosis applications. Cancers (Basel), 16(17):2947. Published: 2024 Aug 23.
Benyahia, S., Meftah, B., and Lézoray, O. (2022). Multi-features extraction based on deep learning for skin lesion classification. Tissue and Cell, 74:101701.
Brancaccio, G., Balato, A., Malvehy, J., Puig, S., Argenziano, G., and Kittler, H. (2024). Artificial intelligence in skin cancer diagnosis: A reality check. Journal of Investigative Dermatology, 144(3):492–499.
Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., and Kalinin, A. A. (2020). Albumentations: Fast and flexible image augmentations. Information, 11(2).
Chang, C.-C., Li, Y.-Z., Wu, H.-C., and Tseng, M.-H. (2022). Melanoma detection using xgb classifier combined with feature extraction and k-means smote techniques. Diagnostics, 12(7):1747. Published: 19 July 2022.
Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1800–1807.
Cruz, R. M., Sabourin, R., and Cavalcanti, G. D. C. (2018). Dynamic classifier selection: Recent advances and perspectives. Information Fusion, 41:195–216.
Khan, M. A., Sharif, M., Akram, T., Damaševičius, R., and Maskeliūnas, R. (2021). Skin lesion segmentation and multiclass classification using deep learning features and improved moth flame optimization. Diagnostics, 11(5):811. Published: 29 April 2021.
Menegola, A., Fornaciali, M., Pires, R., Bittencourt, F. V., Avila, S., and Valle, E. (2017). Knowledge transfer for melanoma screening with deep learning. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pages 297–300.
Roy, A., Cruz, R. M., Sabourin, R., and Cavalcanti, G. D. (2018). A study on combining dynamic selection and data preprocessing for imbalance learning. Neurocomputing, 286:179–192.
Shetty, B., Fernandes, R., Rodrigues, A. P., Chengoden, R., Bhattacharya, S., and Lakshmanna, K. (2022). Skin lesion classification of dermoscopic images using machine learning and convolutional neural network. Scientific Reports, 12(1):18134.
Spolaôr, N., Lee, H. D., Takaki, W. S. R., Coy, C. S. R., and Wu, F. C. (2024). Avaliação de variações da rede profunda efficientnet em bases dermoscópicas. Journal of Health Informatics, 16(especial).
Sá, J., Ensina, L., and Jeronymo, D. (2024). Aplicação de redes de aprendizado profundo e algoritmos de aprendizado de máquina para classificar imagens de câncer de pele. In Anais do XXIV Simpósio Brasileiro de Computação Aplicada à Saúde, pages 651–656, Porto Alegre, RS, Brasil. SBC.
Tschandl, P., Rosendahl, C., and Kittler, H. (2018). The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data, 5(1):180161.
Yanchatuña, O. P., Pereira, J. P., Pila, K. O., Vásquez, P. A., Veintimilla, K. S., Villalba-Meneses, G. F., Alvarado-Cando, O., and Almeida-Galárraga, D. (2021). Skin lesion detection and classification using convolutional neural network for deep feature extraction and support vector machine. International Journal on Advanced Science, Engineering and Information Technology, 11(3):1260–1267.
Zanddizari, H., Nguyen, N., Zeinali, B., and Chang, J. M. (2021). A new preprocessing approach to improve the performance of cnn-based skin lesion classification. Medical & Biological Engineering & Computing, 59(5):1123–1131. Epub 2021 Apr 26.
Published
2025-09-29
How to Cite
SOARES, Pedro A. A.; ENSINA, Leandro A.; FOLEIS, Juliano H..
A Hybrid Approach Combining CNN and Ensemble Algorithms for Dermoscopic Image Classification. In: NATIONAL MEETING ON ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE (ENIAC), 22. , 2025, Fortaleza/CE.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 1527-1538.
ISSN 2763-9061.
DOI: https://doi.org/10.5753/eniac.2025.12460.
