Exploração de Módulos Paralelo Híıbrido de Bioinformática para Ambientes GPU de Supercomputação
Abstract
Bayesian phylogenetic algorithms are computationally intensive. BEAST Bayesian software coupled to BEAGLE 3 high-performance library had been tested on the hybrid resources of the Santos Dumont supercomputer. For analysing large Dengue virus data sets, the use of one or more GPUs proved more efficient than using multi-core.
Keywords:
Arquiteturas Dedicadas e Específicas (GPUs, FPGAs, e outras), Aplicações em Agricultura, Biologia, Engenharia, Física, Matemática, Medicina, Mercado Financeiro, Nanociências, Óleo e Gás, Química e outras áreas
References
Jin, Z. and Bakos, J. D. (2013). Extending the beagle library to a multi fpga platform. BMC Bioinformatics, 14(1):25.
Ocaña, K., Coelho, M., Freire, G., and Osthoff, C. (2020). High-performance computing of beast/beagle in bayesian phylogenetics using sdumont hybrid resources. In 14o BreSci – Brazilian e-Science Workshop. (Aceito em processo de publicação).
Yin, Z., Lan, H., Tan, G., Lu, M., Vasilakos, A. V., and Liu, W. (2017). Computing platforms for big biological data analytics: Perspectives and challenges. Computational and Structural Biotechnology Journal, 15:403–411.
Ocaña, K., Coelho, M., Freire, G., and Osthoff, C. (2020). High-performance computing of beast/beagle in bayesian phylogenetics using sdumont hybrid resources. In 14o BreSci – Brazilian e-Science Workshop. (Aceito em processo de publicação).
Yin, Z., Lan, H., Tan, G., Lu, M., Vasilakos, A. V., and Liu, W. (2017). Computing platforms for big biological data analytics: Perspectives and challenges. Computational and Structural Biotechnology Journal, 15:403–411.
Published
2020-11-30
How to Cite
FREIRE, Guilherme; OCAÑA, Kary; COELHO, Micaella; OSTHOFF, Carla .
Exploração de Módulos Paralelo Híıbrido de Bioinformática para Ambientes GPU de Supercomputação. In: REGIONAL SCHOOL OF HIGH PERFORMANCE COMPUTING FROM RIO DE JANEIRO (ERAD-RJ), 6. , 2020, Evento Online.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2020
.
p. 57-59.
DOI: https://doi.org/10.5753/eradrj.2020.14521.
