Evaluating Federated Learning Scenarios: Impact of Basic Parameters and Realistic Communication in Testbeds

  • Bruno H. Meyer UFPR
  • Aurora Pozo UFPR
  • Michele Nogueira UFMG
  • Wagner M. Nunan Zola UFPR

Resumo


This paper evaluates Federated Learning in different scenarios to identify differences between simulations and hardware. The scenarios include the MENTORED Testbed with x86 nodes, an experimental cluster with aarch64 architectures, and a server simulating FL using Docker.

Referências

Božič, J., Faustino, A. R., Radovič, B., Canini, M., and Pejović, V. (2024). Where is the testbed for my federated learning research? In 2024 IEEE/ACM Symposium on Edge Computing (SEC), pages 249–264. IEEE.

Liu, B., Lv, N., Guo, Y., and Li, Y. (2024). Recent advances on federated learning: A systematic survey. Neurocomputing, page 128019.

Meyer, B. H., Pozo, et al. (2024). Aprendizado federado com autokeras e knowledge distillation. In Anais da XXIV Escola Regional de Alto Desempenho da Região Sul.
Publicado
23/04/2025
MEYER, Bruno H.; POZO, Aurora; NOGUEIRA, Michele; ZOLA, Wagner M. Nunan. Evaluating Federated Learning Scenarios: Impact of Basic Parameters and Realistic Communication in Testbeds. In: ESCOLA REGIONAL DE ALTO DESEMPENHO DA REGIÃO SUL (ERAD-RS), 25. , 2025, Foz do Iguaçu/PR. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 167-168. ISSN 2595-4164. DOI: https://doi.org/10.5753/eradrs.2025.6837.