Detecção do Câncer de Mama em Imagens Infravermelhas Utilizando Características Radiômicas

  • Elisson C. Carvalho IF Sudeste MG
  • Alessandra M. Coelho IF Sudeste MG
  • Matheus F. O. Baffa USP

Abstract


Breast cancer is the second most common type of cancer around the world. When early diagnosed, the patient has a better prognosis and increases their chances of cure. This work proposes the development of an infrared image classification method to aid in the diagnosis of breast cancer. For this, radiomic-based features were used to represent the image along with a Deep Neural Network for pattern recognition and to build a classification model. We conducted an experiment following the Cross-Validation protocol and the proposed method reached an accuracy of 97.27% and a sensitivity of 96.33%. New medical imaging modalities have proven effective in the early detection of breast cancer.

References

Baffa, M. F. O., Conci, A., and Coelho, A. M. (2021). Segmentação de imagens infravermelhas para detecção do câncer de mama utilizando u-net cnn. In XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS). No Prelo.

Baffa, M. F. O. and Lattari, L. G. (2018). Convolutional neural networks for static and dynamic breast infrared imaging classication. In 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pages 174–181.

Instituto Nacional do Cancer. (2021). Câncer de mama. Disponível em: <https://www.inca.gov.br/tipos-de-cancer/cancer-de-mama>. Acessado em: 25 mai. 2021.

Ng, E.-K. (2009). A review of thermography as promising non-invasive detection modality for breast tumor. International Journal of Thermal Sciences, 48(5):849–859.

Poggio, T., Torre, V., and Koch, C. (1987). Computational vision and regularization theory. Readings in computer vision, pages 638–643.

Rasti, R., Rabbani, H., Mehridehnavi, A., and Hajizadeh, F. (2017). Macular oct classication using a multi-scale convolutional neural network ensemble. IEEE transactions on medical imaging, 37(4):1024–1034.

Roslidar, R., Rahman, A., Muharar, R., Syahputra, M. R., Arnia, F., Syukri, M., Pradhan, B., and Munadi, K. (2020). A review on recent progress in thermal imaging and deep learning approaches for breast cancer detection. IEEE Access, 8:116176–116194.

Silva, L., Saade, D., Sequeiros, G., Silva, A., Paiva, A., Bravo, R., and Conci, A. (2014). A new database for breast research with infrared image. Journal of Medical Imaging and Health Informatics, 4(1):92–100.

Silva, L. F., Santos, A. A. S., Bravo, R. S., Silva, A. C., Muchaluat-Saade, D. C., and Conci, A. (2016). Hybrid analysis for indicating patients with breast cancer using temperature time series. Computer methods and programs in biomedicine, 130:142– 153.
Published
2021-08-26
CARVALHO, Elisson C.; COELHO, Alessandra M.; BAFFA, Matheus F. O.. Detecção do Câncer de Mama em Imagens Infravermelhas Utilizando Características Radiômicas. In: REGIONAL SCHOOL OF APPLIED COMPUTING FOR HEALTH (ERCAS), 8. , 2021, São Paulo. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 34-37. DOI: https://doi.org/10.5753/ercas.2021.17433.