Tipificação de Tumores Cerebrais Utilizando Características Radiômicas e Redes Neurais Profundas

  • Davidson L. Souza IF Sudeste MG
  • Alessandra M. Coelho IF Sudeste MG
  • Matheus F. O. Baffa USP

Abstract


The Central Nervous System's tumors consist in the development of cancer cells in one of the nervous structures, such as the brain and the spinal cord. Although there are no routine tests for early diagnosis, the early detection on MRI images can provide a better prognosis. Thus, this paper addresses the development of a brain tumor classification method for multimodality MRI. Using Deep Neural Networks and radiomic feature extraction, the present study obtained a 90,29% accuracy in determining the types of tumor present in the exams.

References

Bhuvaji, S., Kadam, A., Bhumkar, P., Dedge, S., and Kanchan, S. (2020). Brain tumor classication (mri). Kaggle, doi: 10.34740/kaggle/dsv/1183165.

Bondy, M. L., Scheurer, M. E., Malmer, B., Barnholtz-Sloan, J. S., Davis, F. G., Il’Yasova, D., Kruchko, C., McCarthy, B. J., Rajaraman, P., Schwartzbaum, J. A., et al. (2008). Brain tumor epidemiology: consensus from the brain tumor epidemiology consortium. Cancer, 113(S7):1953–1968.

Instituto Nacional do Cancer. (2021). Câncer do sistema nervoso central. Disponível em: <https://www.inca.gov.br/tipos-de-cancer/cancer-do-sistema-nervoso-central>. Acesso em: 29 mai. 2021.

Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., Van Stiphout, R. G., Granton, P., Zegers, C. M., Gillies, R., Boellard, R., Dekker, A., et al. (2012). Radiomics: extracting more information from medical images using advanced feature analysis. European journal of cancer, 48(4):441–446.

Louis, D. N., Perry, A., Reifenberger, G., Von Deimling, A., Figarella-Branger, D., Cavenee, W. K., Ohgaki, H., Wiestler, O. D., Kleihues, P., and Ellison, D. W. (2016). The 2016 world health organization classication of tumors of the central nervous system: a summary. Acta neuropathologica, 131(6):803–820.

Tandel, G. S., Biswas, M., Kakde, O. G., Tiwari, A., Suri, H. S., Turk, M., Laird, J. R., Asare, C. K., Ankrah, A. A., Khanna, N., et al. (2019). A review on a deep learning perspective in brain cancer classication. Cancers, 11(1):111.

Van Griethuysen, J. J., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G., Fillion-Robin, J.-C., Pieper, S., and Aerts, H. J. (2017). Computational radiomics system to decode the radiographic phenotype. Cancer research, 77(21):e104–e107.
Published
2021-08-26
SOUZA, Davidson L.; COELHO, Alessandra M.; BAFFA, Matheus F. O.. Tipificação de Tumores Cerebrais Utilizando Características Radiômicas e Redes Neurais Profundas. In: REGIONAL SCHOOL OF APPLIED COMPUTING FOR HEALTH (ERCAS), 8. , 2021, São Paulo. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 38-41. DOI: https://doi.org/10.5753/ercas.2021.17434.