Estratégias de Controle para Sintonização Ótima de PSS Utilizando Crow Search Algorithm

  • Raimundo N. D. Costa Filho UFMA
  • Éder D. C. Pereira UFMA

Abstract


This work applies three different strategies to tune the Power System Stabilizer (PSS) parameters in multi-machine electrical systems. The difference between the three strategies is based on the number of decision variables used in the optimization process, while the objective function aims to maximize the minimum damping of the electrical system considering several operating points. The optimization technique used is the metaheuristic called CSA (Crow Search Algorithm). CSA is a recent metaheuristic that is based on the intelligent behavior of crows. The results and discussions are obtained using an electrical system with 5 generators and 7 buses.

References

Abido, M. A. (2002). Optimal Design of Power System Stabilizers Using Particle Swarm Optimization. IEEE Transactions on Energy Conversion, vol. 17, no. 3, pp. 406-413.

Ali, E. S. (2014). Optimization of Power System Stabilizers Using BAT Search Algorithm. Electrical Power and Energy Systems, vol. 61, pp. 683-690.

Askarzadeh, A. (2016). A Metaheuristic Method for Solving Constrained Engineering Optimization Problems: Crow Search Algorithm. Computers & Structures, vol. 169, pp. 1-12.

Bomfim, A. L. B.; Taranto, G. N. and Falcão, D. M. (2000). Simultaneous Tuning of Power System Damping Controllers Using Genetic Algorithms. IEEE Transactions on Power System, vol. 15, no. 1, pp. 163-169.

Boukarim, G. E., et al. (2000). A Comparison of Classical, Robust and Decentralized Control Designs for Multiple Power System Stabilizers. IEEE Transactions on Power Systems, vol. 15, no. 5, pp. 1287-1292.

Hussien, A. G., et al (2020). Crow Search Algorithm: Theory, Recent Advances, and Applications. IEEE Access, vol. 8, pp. 173548-173565.

Kundur, P. (1994). Power System Stability and Control. McGraw-Hill.

Martins, N. and Lima, L. T. G. (1989). Eigenvalue and Frequency Domain Analysis of Small-Signal Electromechanical Stability Problems. IEEE Special Publication on Eigenanalysis and Frequency Domain Methods for System Dynamic Performance, pp. 17-33.

PacDynSmall Stability Analysis and Control V. 9.3.4. (2011). CEPEL, Centro de Pesquisas de Energia Elétrica. Rio de Janeiro, User's Manual.

Peres, W., Oliveira, E. J., Passo Filho, J. A. and Silva Junior, I. C. (2015). Coordinated Tuning of Power System Stabilizers Using Bio-Inspired Algorithms. Eletrical Power and Energy Systems, vol. 64, pp. 419-428.

Rabih, A. J.; Pal, B. C. and Martins, N. (2010). A Sequential Conic Programming Approach for the Coordinated and Robust Design of Power System Stabilizers. IEEE Transaction on Power Systems, vol. 25, no. 3, pp. 1627-1637.

Rogers, G (2000). Power System Oscillations. Kluwer Academic Publisher.

Simfukwe, D. D., Pal, B. C., Jabr, R. A. and Martins, N. (2011). Robust and Low-Order Design of Flexible AC Transmission Systems and Power System Stabilisers for Oscillation Damping. IET Generation, Transmission & Distribution, vol. 6, no. 5, pp. 445-452.

Singh, M., Patel, R. N., Neema, and D. D. (2019). Robust Tuning of Excitation Controller for Stability Enhancement Using Multi-objective Metaheuristic Firefly Algorithm. Swarm and Evolutionary Computation, vol. 44, pp. 136-147.

Wang, S. K. A Novel Objective Function and Algorithm for Optimal PSS Parameter Design in a Multi-Machine Power System. IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 522-531.
Published
2022-09-28
COSTA FILHO, Raimundo N. D.; PEREIRA, Éder D. C.. Estratégias de Controle para Sintonização Ótima de PSS Utilizando Crow Search Algorithm. In: REGIONAL SCHOOL ON COMPUTING OF CEARÁ, MARANHÃO, AND PIAUÍ (ERCEMAPI), 10. , 2022, São Luís/MA. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 79-88. DOI: https://doi.org/10.5753/ercemapi.2022.225959.