Paralelização Eficiente na Simulação da Elevação do Nível do Mar em Áreas de Reentrâncias Maranhenses

  • Francisco Borges Carreiro Filho IFMA
  • Helder Pereira Borges IFMA
  • Omar Andres Carmona Cortes IFMA

Abstract


Modeling actual phenomena in computer systems is a complex activity that usually demands processing a massive amount of data. In this context, high-performance computing is an attractive option to reduce the application’s execution time. Thus, we investigate parallel applications through multicore (CPU) and many-core (GPU) computing for simulating the rising tide, a significant problem caused by climatic changes, especially in mangrove areas. We simulated the application using cellular automata in three different cenários: sequential, parallel using MPI, and parallel using C-CUDA. Results have shown that parallel versions presented expressive gains, especially in the GPU architecture, reaching a speedup of 2.88 using MPI and 253,03 using a C-CUDA.

References

Agrawala, S., Ota, T., Ahmed, A., Smith, J. B., and van Aalst, M. K. (2003). Development and climate change in Bangladesh: focus on coastal flooding and the Sundarbans. Technical report, Head of Publications Services, OECD, France.

Alves, J. R. P. (2001). Manguezais: educar para proteger. FEMAR: SEMADS.

Bezerra, D. d. S. (2014). Modelagem da dinâmica do manguezal frente à elevação do nível do mar.

Faraco, L. F. D., Andriguetto-Filho, J. M., and Lana, P. C. (2010). Methodology for assessing the vulnerability of mangroves and fisherfolk to climate change. Pan-American Journal of Aquatic Sciences, 5(2):205-223.

Jesus, E. M. d., Santos, A. L. S., Cortes, O. A. C., and Borges, H. P. (2018). Aplicação de autômatos celulares paralelos para simulação do impacto causado pela elevação do nível do mar. In Anais do Simpósio de Sistemas Computacionais de Alto Desempenho (WSCAD), Workshop de Iniciação Científica (WIC), pages 538-543.

Kirk, D. (2007). Nvidia cuda software and gpu parallel computing architecture. In Proceedings of the 6th international symposium on Memory management, volume 7, pages 103-104.

McIvor, A., Spencer, T., Möller, I., and Spalding, M. (2013). The response of mangrove soil surface elevation to sea level rise. Technical report, The Nature Conservancy and Wetlands International.

Soares, M. L. G. (2009). A conceptual model forresponses of mangrove forest to sea level rise. Journal of Coastal Research, 56:267-271.

Vermeer, M. and Rahmstorf, S. (2009). Global sea level linked to global temperature. Proceedings of the National Academy of Sciences, 106(51):21527-21532.

Weimar, J. R. (2003). Simulation with Cellular Automata. Logos Verlag Berlin.

Wolfram, S. (1982). Cellular automata as simple self-organizing systems. Technical report, Calif. Inst. Technol., Pasadena, CA.
Published
2022-09-28
CARREIRO FILHO, Francisco Borges; BORGES, Helder Pereira; CORTES, Omar Andres Carmona. Paralelização Eficiente na Simulação da Elevação do Nível do Mar em Áreas de Reentrâncias Maranhenses. In: REGIONAL SCHOOL ON COMPUTING OF CEARÁ, MARANHÃO, AND PIAUÍ (ERCEMAPI), 10. , 2022, São Luís/MA. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 99-108. DOI: https://doi.org/10.5753/ercemapi.2022.225980.