Automatic Detection of Fake News: A Systematic Review

  • Alice Barbosa IFCE
  • Felipe Sousa IFCE
  • Reinaldo Braga IFCE

Abstract


The adherence to social networks has allowed easy access to information with one click, offering mechanisms with a wide reach of dissemination in the Internet. However, the large volume of sharing, as well as the challenge of validating the veracity of the data, promotes a favorable environment for the proliferation of fake news. With the rise of Fake News, several studies have been carried out to identify fake news using Natural Language Processing. This article presents a systematic review of Brazilian and international studies on the detection of fake news. The results show that Twitter is the social network most studied by the articles and Support Vector Machine and Naive Bayes are the most applied classification algorithms.

References

Allcott, H. and Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of Economic Perspectives.

Cerrao, N. G., CASTRO, F. F. d., and JESUS, A. F. d. (2018). O método de revisão sistemática da literatura (rs) na área da ciência da informação no brasil: análise de dados de pesquisa. Informação & Tecnologia.

DataReportal (2023). DIGITAL 2023: GLOBAL OVERVIEW REPORT. Disponível em: [link]. Acesso em: 02 Maio 2023.

de Almeida, L. D., Fuzaro, V., Nieto, F. V., and Santana, A. L. (2021). Identificação de “fake news” no contexto político brasileiro: uma abordagem computacional. Anais do II Workshop sobre as Implicações da Computação na Sociedade.

Keele, S. et al. (2007). Guidelines for performing systematic literature reviews in software engineering. Technical report, Technical report, Ver. 2.3 EBSE Technical Report. EBSE.

Khan, Y. and Thakur, S. (2022). Fake news detection of south african covid-19 related tweets using machine learning. International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD).

Kumar, S., Kumar, S., Yadav, P., and Bagri, M. (2021). A survey on analysis of fake news detection techniques. International Conference on Artificial Intelligence and Smart Systems (ICAIS).

Martín, A., Huertas-Tato, J., Álvaro Huertas-García, Villar-Rodríguez, G., and Camacho, D. (2022). Facter-check: Semi-automated fact-checking through semantic similarity and natural language inference. Knowledge-Based Systems, 251.

Medeiros, F. D. and Braga, R. B. (2020). Fake news detection in social media: A systematic review.

Oshikawa, R., Qian, J., and Wang, W. Y. (2020). A survey on natural language processing for fake news detection.

Reuters, I. and of Oxford, U. (2021). Reuters Institute Digital News Report 2021. Acesso em: 18 Maio 2022.

Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M., and Liu, Y. (2019). Combating fake news: A survey on identification and mitigation techniques. ACM Trans. Intell. Syst. Technol.

Sousa, F., Barbosa, A., Oliveira, C., and Braga, R. (2022). Detecção de fake news em língua portuguesa combinando redes neurais convolucionais e algoritmos de aprendizagem de máquina. Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos.

Zhang, L., Huang, G., and Khan, M. (2022). A hybrid approach for network rumor detection based on attention mechanism and bidirectional gru model in big data environment. Mob. Inf. Syst., 2022.
Published
2023-11-23
BARBOSA, Alice; SOUSA, Felipe; BRAGA, Reinaldo. Automatic Detection of Fake News: A Systematic Review. In: REGIONAL SCHOOL ON COMPUTING OF CEARÁ, MARANHÃO, AND PIAUÍ (ERCEMAPI), 11. , 2023, Aracati/CE. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 42-51. DOI: https://doi.org/10.5753/ercemapi.2023.236262.