Use of Metaheuristics for designing industrial PID controllers in speed control systems

  • Lucas L. C. Batista UFPI
  • Lucas M. Rufini UFPI
  • José M. A. Junior UFPI

Abstract


Metaheuristics are optimization algorithms able to find suboptimal solutions in a short time, applicable in Power Systems, Communications and Industrial Systems’ Control. This paper presents the performance of the metaheuristics Particle Swarm Optimization (PSO), its accelerated variant (APSO) and Firefly Algorithm (FA) applied to optimize the design of a PID controller in a didactic speed control industrial process. The PID controllers tuned by metaheuristics were compared to classic controllers, and had better results than classic control algorithms.

References

K. J. Astrom. Pid controllers: theory, design, and tuning. The international society of measurement and control, 1995.

A. K. Bhullar, R. Kaur, and S. Sondhi. Enhanced crow search algorithm for avr optimization. Soft Computing, 24(16):11957–11987, 2020.

C. Bruni, G. Dipillo, and G. Koch. Bilinear systems: An appealing class of”nearly linear”systems in theory and applications. IEEE Transactions on automatic control, 19 (4):334–348, 1974.

Y. Dhieb, M. Yaich, A. Guermazi, M. Ghariani, et al. Pid controller tuning using ant colony optimization for induction motor. Journal of Electrical Systems, 15(1):133–141, 2019.

F. Glover, M. Laguna, F. Glover, and M. Laguna. Tabu search principles. Tabu Search, pages 125–151, 1997.

M. A. Guelfi, P. R. S. S. Oliveira, A. A. Carniato, and L. A. Carniato. Estudo comparativo entre variações de evolução diferencial para a sintonia de controladores pid. Revista Sinergia, 22(1), 2020.

K. Hussain, M. N. Mohd Salleh, S. Cheng, and Y. Shi. Metaheuristic research: a comprehensive survey. Artificial intelligence review, 52:2191–2233, 2019.

D. Ibrahim. Microcontroller based applied digital control. John Wiley, 2006.

M. J. Kochenderfer and T. A. Wheeler. Algorithms for optimization. Mit Press, 2019.

S. Nesmachnow. An overview of metaheuristics: accurate and efficient methods for optimisation. International Journal of Metaheuristics, 3(4):320–347, 2014.

K. Ogata. Engenharia de controle moderno. 5ª. São Paulo: Pearson, 2011.

P. W. d. Oliveira. Contribuições ao problema de sintonia ótima de controladores pid de ordens inteira e fracionária via otimização metaheurística. 2020.

S. Rajendran and H. Srinivasan. Simplified accelerated particle swarm optimisation algorithm for efficient maximum power point tracking in partially shaded photovoltaic systems. IET Renewable Power Generation, 10(9):1340–1347, 2016.

S. S. Rao. Engineering optimization: theory and practice. John Wiley & Sons, 2009.

G. F. Soares, J. B. d. C. Neto, L. G. d. Oliveira, and O. d. M. Almeida. Desenvolvimento de hardware didático para ensino de controle digital, 2019.

F. Van den Bergh and A. P. Engelbrecht. A new locally convergent particle swarm optimiser. In IEEE International conference on systems, man and cybernetics, volume 3, pages 6–pp. IEEE, 2002.

R. U. Viaro, L. C. Borin, R. Medke, E. Mattos, C. R. D. Osório, and V. F. Montagner. Otimização de controladores baseada em meta-heurística aplicada a conversores cc-cc com validação em hardware-in-the-loop. Eletrônica de Potência, 29, 2024.

J. F. Vidal et al. Metaheurísticas populacionais: estudo comparativo na sintonia de parâmetros de controladores clássicos. 2016.

X.-S. Yang. Firefly algorithms for multimodal optimization. In International symposium on stochastic algorithms, pages 169–178. Springer, 2009.

X.-S. Yang. Metaheuristic Optimization. Scholarpedia, 6(8):11472, 2011. DOI: 10.4249/scholarpedia.11472. revision#91488.
Published
2024-09-11
BATISTA, Lucas L. C.; RUFINI, Lucas M.; A. JUNIOR, José M.. Use of Metaheuristics for designing industrial PID controllers in speed control systems. In: REGIONAL SCHOOL ON COMPUTING OF CEARÁ, MARANHÃO, AND PIAUÍ (ERCEMAPI), 12. , 2024, Parnaíba/PI. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 209-218. DOI: https://doi.org/10.5753/ercemapi.2024.243758.