Techniques for crime prediction using official data considering time and space

  • Heytor Norberth Leite da Silva UFPI
  • Saul Sousa da Rocha UFPI
  • Glauber Dias Gonçalves UFPI

Abstract


This paper proposes the use of official data to predict crime rates in metropolitan areas, with the aim of providing support for more effective public policies. To this end, a dataset was compiled that covers specific characteristics of urban regions, correlating them with official crime rates over time. The methodology adopted included the application of regression models and time series, which were evaluated for their ability to identify seasonal patterns and trends in crime occurrence. The results obtained demonstrate the effectiveness of these models in predicting crime rates, highlighting the importance of analytical tools in proactive decision-making by authorities and communities, aiming at preventing and combating crime.

References

Araújo, A., Cacho, N., Bezerra, L., Vieira, C., and Borges, J. Towards a crime hotspot detection framework for patrol planning. In 2018 IEEE 20th International Conference on High Performance Computing and Communications, pages=1256–1263, year=2018, organization=IEEE.

Box, G. E. P. and Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control. Holden-Day.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Chainey, S. and Ratcliffe, J. (2008). GIS and Crime Mapping. John Wiley Sons.

Chatfield, C. (2003). The Analysis of Time Series: An Introduction. Chapman & Hall/CRC, 6th edition.

Drucker, H., Burges, C. J., Kaufman, L., Smola, A., Vapnik, V., et al. (1997). Support vector regression machines. Advances in neural information processing systems, 9:155–161.

Gorr, W. L., Olligschlaeger, A. M., and Thompson, Y. (1994). Short-term forecasting of crime. International Journal of Forecasting, 10(3):129–142.

Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press.

IBGE. IBGE - Instituto Brasileiro de Geografia e Estatística. [link]. Acesso em: 15 jul. 2024.

Ingilevich, V. and Ivanov, S. (2018). Crime rate prediction in the urban environment using social factors. Procedia Computer Science, 136:472–478.

Kamarianakis, Y. and Prastacos, P. (2005). Space–time modeling of traffic flow. Computers & Geosciences, 31(2):119–133.

Nery, M. B., Souza, A. A. L. d., and Adorno, S. (2019). Os padrões urbano-demográficos da capital paulista. Estudos Avançados, 33(97):5–36.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830.

SANTOS, J. M. D. R. B. D. (2020). Uso de sistema de informaÇÃo geogrÁfica para monitoramento da violÊncia e criminalidade na Área do primeiro batalhÃo de polÍcia militar de alagoas.

Sathyadevan, S. and Devan (2014). Crime analysis and prediction using data mining. In 2014 First international conference on networks & soft computing (ICNSC2014), pages 406–412. IEEE.

Shumway, R. H. and Stoffer, D. S. (2017). Time Series Analysis and Its Applications: With R Examples. Springer, 4th edition.

Silva, T. H., Viana, A. C., Benevenuto, F., Villas, L., Salles, J., Loureiro, A., and Quercia, D. (2019). Urban computing leveraging location-based social network data: a survey. ACM Computing Surveys (CSUR), 52(1):1–39.

SSP-SP (2022). Dados estatísticos do estado de são paulo. Disponível em: [link]. Acesso em 10 de mai. 2022.

SSP-SP (2023). Cidade de sp tem média de 21 roubos e furtos a residências por dia entre janeiro e agosto. Disponível em: [link]. Acesso em: 10 de novembro 2023.

Wang, F. and Xu, Y. (2013). Estimating o-d travel time matrix by google maps api: Implementation, advantages, and implications. Annals of GIS, 19(4):273–283.

Weisburd, D., Groff, E. R., and Yang, S.-M. (2012). The criminology of place: Street segments and our understanding of the crime problem. Oxford University Press.
Published
2024-09-11
SILVA, Heytor Norberth Leite da; ROCHA, Saul Sousa da; GONÇALVES, Glauber Dias. Techniques for crime prediction using official data considering time and space. In: REGIONAL SCHOOL ON COMPUTING OF CEARÁ, MARANHÃO, AND PIAUÍ (ERCEMAPI), 12. , 2024, Parnaíba/PI. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 229-238. DOI: https://doi.org/10.5753/ercemapi.2024.243773.