FugaPet-Rotas: Um algoritmo inteligente para recomendação de rotas visando buscar animais desaparecidos

  • Francisco Carlos M. Souza UTFPR
  • Elio M. Costa FugaPet
  • Alexandre T. Matinelli FugaPet
  • Lincoln M. Costa UFRJ
  • Alinne C. C. Souza UTFPR

Abstract


The pet market in Brazil is one of the sectors that has grown significantly due to covering different domains. In this context, the FugaPet startup was created which aims to support tutors find missing pets through technology. Based on the solution developed by FugaPet startup, this paper aims to present an intelligent algorithm to recommend routes that optimize the chances of tutors finding their missing pets. To make the algorithm feasible, we developed a webapp to collect data from volunteer tutors about the location where a pet was found. The results indicate that it is possible to recommend routes that minimize the effort to look for a missing animal. Therefore, it can be asserted that, through an experiment with 50 repetitions, the algorithm manages to arrive most of the time at the same solution or in solutions very close to the ideal.

References

Basili, V. and Weiss, D. (1984). A methodology for collecting valid software engineering data. IEEE Transactions on Software Engineering, 10(6):728–738.

Chen, C., Zhang, S., Yu, Q., Ye, Z., Ye, Z., and Hu, F. (2021). Personalized travel route recommendation algorithm based on improved genetic algorithm. J. Intell. Fuzzy Syst., 40(3):4407–4423.

Dias, M. C. (2022). Mercado pet: setor bilionário inspira pequenos negócios no brasil.

Embratel (2021). Inteligência artificial: 4 setores que possuem maturidade com a tecnologia.

Germain, E., S. B. and Poulle, M.-L. (2008). Spatio-temporal sharing between the european wildcat, the domestic cat and their hybrids. In Journal of Zoology, pages 195–203.

Guerra, A., Teresa, B., Brites, J., Silva, C., and Marcelino, L. (2014). Patinhas: Service to locate missing animals. In 2014 9th Iberian Conference on Information Systems and Technologies (CISTI), pages 1–6.

Lord, L. K., Wittum, T. E., Ferketich, A. K., Funk, J. A., and Rajala-Schultz, P. J. (2007). Search and identification methods that owners use to find a lost dog. Journal of the American Veterinary Medical Association, 230(2):211 – 216.

Rocha, J. S. R. d. (2019). Cadê meu bichinho? um sistema georreferenciado para encontrar animais de estimação perdidos.

Russell, S. J. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Pearson Education, 2nd edition.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., and Wesslen, A. (2012). Experimentation in Software Engineering: An Introduction. Springer-Verlag Berlin Heidelberg, 1st. edition.

Zhang, J.-D. and Chow, C.-Y. (2013). Igslr: Personalized geo-social location recommendation: A kernel density estimation approach. SIGSPATIAL’13, page 334–343, New York, NY, USA. Association for Computing Machinery.
Published
2022-10-18
SOUZA, Francisco Carlos M.; COSTA, Elio M.; MATINELLI, Alexandre T.; COSTA, Lincoln M.; SOUZA, Alinne C. C.. FugaPet-Rotas: Um algoritmo inteligente para recomendação de rotas visando buscar animais desaparecidos. In: REGIONAL SCHOOL OF SOFTWARE ENGINEERING (ERES), 6. , 2022, Blumenau. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 199-208. DOI: https://doi.org/10.5753/eres.2022.227993.