Desenvolvimento de um Sistema de Detecção de Placas Licenciadas

  • Rafael A. A. Tomé UFG
  • Arnold C. V. Lima UFG
  • Gustavo T. Laureano UFG

Abstract


The automatic detection of license plates through images has been the subject of study for many years, but to this date there are no robust enough methods to handle different poses or that handle complex scenes in a satisfactory way. One of the main difficulties about the construction of a license plate detection system is modeling the visual pattern to be detected, this pattern can be ambiguous and have variable point of view, besides varying according to the legislation. This paper presents a method of detecting vehicle license plates using Haar features and Adaboost algorithm, which does not require direct modeling or definition of characteristics for the classification process. The proposed methodology was evaluated using the database from UFPR (Federal University of Paraná) and the results show the viability of the proposal.

Keywords: auto detection, license plates, vehicles, data modeling

References

Ahn, C., Lee, B., Yang, S., and Park, S. (2017). Design of car license plate area detection algorithm for enhanced recognition plate. In 2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT), pages 1–4.

AlyanNezhadi, M. M., Hashemi, S. M. R., and Abolghasemi, V. (2017). License plate detection in complex scenes based on fusion of gaussian filtering and bayesian network.

In 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), pages 0022–0026.

Chandra, H., Michael, Hadisaputra, K. R., Santoso, H., and Anggadjaja, E. (2017). Smart parking management system: An integration of rfid, alpr, and wsn. In 2017 IEEE 3rd International Conference on Engineering Technologies and Social Sciences (ICETSS), pages 1–6.

Chaves, B. B. (2011). Estudo do algoritmo adaboost de aprendizagem de maquina aplicado a sensores e sistemas embarcados. Master’s thesis, Sao Paulo: Universidade de São Paulo, Escola Politécnica.

Dataset, A. (2019). Repository containing image database used in the training phase. https://web.inf.ufpr.br/vri/databases/ufpr-alpr/. accessed 2019-09-23.

Du, S., Ibrahim, M., Shehata, M., and Badawy, W. (2013). Automatic license plate recognition (alpr): A state-of-the-art review. In IEEE Transactions on Circuits and Systems for Video Technology, volume 23, pages 311–325.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. In Journal of Computer and System Sciences, volume 55, pages 119–139.

Gibson, W. (2005). Pattern recognition. Berkley Books, 1st edition. Knowrafa (2019). Repository containing source code and image database. https:
//github.com/knowrafa/ic-plate-recognition. Accessed 2019-09-23.

Laroca, R., Severo, E., Zanlorensi, L. A., Oliveira, L. S., Gonc ̧alves, G. R., Schwartz, W. R., and Menotti, D. (2018). A robust real-time automatic license plate recognition based on the yolo detector. pages 1–10. IEEE.

Quiros, A. R. F., Bedruz, R. A., Uy, A. C., Abad, A., Bandala, A., Dadios, E. P., Maningo, J. M., and Vicerra, R. R. (2017). Localization of license plates using optimized edge and contour detection technique. In TENCON 2017 - 2017 IEEE Region 10 Conference, pages 1075–1080.

Szeliski, R. (2011). Computer Vision: Algorithms and Applications. Springer, 1st edition.

Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, volume 1, pages I–I.

Wang, A., Liu, X., Han, Y., and Qi, C. (2012). License plate location algorithm based on edge detection and morphology. In 2012 7th International Forum on Strategic Technology (IFOST), pages 1–4.
Published
2019-11-22
TOMÉ, Rafael A. A.; LIMA, Arnold C. V. ; LAUREANO, Gustavo T.. Desenvolvimento de um Sistema de Detecção de Placas Licenciadas. In: REGIONAL SCHOOL ON INFORMATICS OF GOIÁS (ERI-GO), 7. , 2019, Goiânia. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 251-262.