Avaliação de Métodos de Seleção de Características para Ataques de Inundação HTTP
Abstract
In an increasingly digital and interconnected world, the protection of web servers becomes essential. In this context, the goal of this work is to perform an evaluation of feature selection methods for the detection of anomalies generated by the DoS Slowhttptest attack. As a result, we aim to contribute to the advancement of knowledge in the field of anomaly detection and identify a set of more relevant features.
References
Al-gethami, W. and Aljuhani, A. (2022). Detection of http attacks using machine learning. In 2022 2nd International Conference on Computing and Information Technology (ICCIT), pages 344–348.
Bhargava, R., Pal Singh, Y., and Narawade, N. S. (2022). Implementation of machine learning based ddos attack detection system. In 2022 3rd International Conference for Emerging Technology (INCET), pages 1–5.
Dalmazo, B. L., Marques, J. A., Costa, L. R., Bonfim, M. S., Carvalho, R. N., da Silva, A. S., Fernandes, S., Bordim, J. L., Alchieri, E., Schaeffer-Filho, A., Paschoal Gaspary, L., and Cordeiro, W. (2021). A systematic review on distributed denial of service attack defense mechanisms in programmable networks. International Journal of Network Management, 31(6):e2163.
Dalmazo, B. L., Vilela, J. P., and Curado, M. (2018). Triple-similarity mechanism for alarm management in the cloud. Computers & Security, 78:33–42.
Najafabadi, M. M., Khoshgoftaar, T. M., Calvert, C., and Kemp, C. (2017). User behavior anomaly detection for application layer ddos attacks. In 2017 IEEE International Conference on Information Reuse and Integration (IRI), pages 4–16.
Sharafaldin, I., Lashkari, A. H., and Ghorbani, A. A. (2018). Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1:108–116.
Simon, K. (2022). Digital 2022: October global statshot report. data reportal. Disponivel em: [link]. Acesso em: 10 de agosto de 2023.
Bhargava, R., Pal Singh, Y., and Narawade, N. S. (2022). Implementation of machine learning based ddos attack detection system. In 2022 3rd International Conference for Emerging Technology (INCET), pages 1–5.
Dalmazo, B. L., Marques, J. A., Costa, L. R., Bonfim, M. S., Carvalho, R. N., da Silva, A. S., Fernandes, S., Bordim, J. L., Alchieri, E., Schaeffer-Filho, A., Paschoal Gaspary, L., and Cordeiro, W. (2021). A systematic review on distributed denial of service attack defense mechanisms in programmable networks. International Journal of Network Management, 31(6):e2163.
Dalmazo, B. L., Vilela, J. P., and Curado, M. (2018). Triple-similarity mechanism for alarm management in the cloud. Computers & Security, 78:33–42.
Najafabadi, M. M., Khoshgoftaar, T. M., Calvert, C., and Kemp, C. (2017). User behavior anomaly detection for application layer ddos attacks. In 2017 IEEE International Conference on Information Reuse and Integration (IRI), pages 4–16.
Sharafaldin, I., Lashkari, A. H., and Ghorbani, A. A. (2018). Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1:108–116.
Simon, K. (2022). Digital 2022: October global statshot report. data reportal. Disponivel em: [link]. Acesso em: 10 de agosto de 2023.
Published
2023-10-23
How to Cite
MUNDSTOCK, Iuri A.; BERRI, Rafael A.; DALMAZO, Bruno L..
Avaliação de Métodos de Seleção de Características para Ataques de Inundação HTTP. In: REGIONAL SCHOOL OF COMPUTER NETWORKS (ERRC), 20. , 2023, Porto Alegre/RS.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2023
.
p. 127-132.
DOI: https://doi.org/10.5753/errc.2023.923.