The 𝜶 Parameter in the Generalized Choquet Integral for Network Traffic Prediction

Abstract


Network traffic is crucial to the functioning of modern life, and predicting and measuring this traffic is a valuable strategic asset that requires deep knowledge of algorithms and technology. Several models, such as fuzzy c-means and regression, attempt to solve this issue but still do not achieve optimal performance. This paper proposes an aggregation model based on the variation of the 𝛼 parameter in the Choquet integral, aiming to measure the errors associated with each 𝛼 value to identify the best method and parameter for optimizing the equations.
Keywords: Search models, Choquet integral, Network traffic prediction

References

Cloud, H. The nist definition of cloud computing. National institute of science and technology, special publication, v. 800, n. 2011, p. 145, 2011.

Dalmazo, B. L.; Vilela, J. P.; Curado, M. Triple-Similarity Mechanism for alarm management in the cloud. Computers & Security, v. 78, p. 33–42, 2018. ISSN 0167-4048. DOI: 10.1016/j.cose.2018.05.016. Disponível em: [link].

Leite, L. et al. Federated Learning under Attack: Improving Gradient Inversion for Batch of Images. In: ANAIS do XXIV Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais. São José dos Campos/SP: SBC, 2024. P. 794–800. DOI: 10.5753/sbseg.2024.241680. Disponível em: [link].

Aldhyani, T. H. H. et al. Intelligent Hybrid Model to Enhance Time Series Models for Predicting Network Traffic. IEEE Access, v. 8, p. 130431–130451, 2020. DOI: 10.1109/ACCESS.2020.3009169.

Salama, A.; Saatchi, R.; Burke, D. Adaptive Sampling Technique for Computer Network Traffic Parameters Using a Combination of Fuzzy System and Regression Model. In: 2017 Fourth International Conference on Mathematics and Computers in Sciences and in Industry (MCSI). 2017. P. 206–211. DOI: 10.1109/MCSI.2017.43.

Chen, L. et al. FEW-NNN: A fuzzy entropy weighted natural nearest neighbor method for flow-based network traffic attack detection. China Communications, v. 17, n. 5, p. 151–167, 2020. DOI: 10.23919/JCC.2020.05.013.

Dalmazo, B. L.; Vilela, J. P.; Curado, M. Performance analysis of network traffic predictors in the cloud. Journal of Network and Systems Management, Springer, v. 25, p. 290–320, 2017.

Mayor, G.; Trillas, E. On the representation of some aggregation functions. In.

Murofushi, T.; Sugeno, M.; Machida, M. Nonmonotonic fuzzy measures and the Choquet integral. Fuzzy sets and Systems, Elsevier, v. 64, n. 1, p. 73–86, 1994.

Alsina, C.; Schweizer, B.; Frank, M. J. Associative functions: triangular norms and copulas. World Scientific, 2006.

Lucca, G. et al. A proposal for tuning the 𝛼 parameter in 𝐶𝛼𝐶-integrals for application in fuzzy rule-based classification systems. Natural Computing, v. 19, n. 3, p. 533–546, 2020. ISSN 1572-9796. DOI: 10.1007/s11047-018-9678-x.

Lucca, G. et al. A Proposal for Tuning the Alpha Parameter in a Copula Function Applied in Fuzzy Rule-Based Classification Systems. In: 2016 5th Brazilian Conference on Intelligent Systems (BRACIS). 2016. P. 367–372. DOI: 10.1109/BRACIS.2016.073.
Published
2024-11-27
QUEVEDO, Abreu; AYRES, Denner; DIMURO, Graçaliz; LUCCA, Giancarlo; RIKER, André; DALMAZO, Bruno L.. The 𝜶 Parameter in the Generalized Choquet Integral for Network Traffic Prediction. In: REGIONAL SCHOOL OF COMPUTER NETWORKS (ERRC), 21. , 2024, Rio Grande/RS. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 30-34. DOI: https://doi.org/10.5753/errc.2024.4627.