Aplicações, Desafios e Limitações dos Digital Twins na América Latina
Resumo
Os DT (digital twins ou gêmeos digitais) são uma tecnologia emergente que tem ganhado crescente relevância em diversas indústrias ao redor do mundo, incluindo a América Latina. Gêmeos digitais são réplicas virtuais de objetos, processos ou sistemas físicos, criadas por meio de dados em tempo real, sensores e algoritmos avançados. Essas réplicas permitem que empresas e instituições simulem, monitorarem e otimizem a operação de seus ativos e processos antes de implementá-los no mundo físico. Este artigo apresenta um arrazoado teórico sobre DT e um panorama sobre o estado da arte em DT na América Latina.
Referências
J. E. C. Bachmann, I. F. Silveira, and V. F. Martins, "Digital Twins for Education: A Literature Review," in Proceedings of CBIE 2024 – XIII Congresso Brasileiro de Informática na Educação, Rio de Janeiro, Nov. 2024.
I. F. Silveira, A. Cardoso, and V. F. Martins, "Simulation in Education and Training: From Virtual Reality to Digital Twins," in Proceedings of LACLO 2024 – XIX Conferência Latino-americana de Tecnologias de Aprendizagem, Montevideo, Uruguay, Oct. 2024.
T. W. Kang and C. H. Hong, "A study on software architecture for effective BIM/GIS-based facility management data integration," Automation in Construction, vol. 54, pp. 25-38, 2015.
M. Singh, E. Fuenmayor, E. P. Hinchy, Y. Qiao, N. Murray, and D. Devine, "Digital twin: Origin to future," Applied System Innovation, vol. 4, no. 2, p. 36, 2021. DOI: 10.3390/asi4020036.
Y. Zhao, C. Cao, and Z. Liu, "A framework for prefabricated component hoisting management systems based on digital twin technology," Buildings, vol. 12, no. 3, p. 276, 2022.
J. Tang, Y. Liu, X. Zhang, and W. Li, "Digital Twin-Driven Real-Time Suppression of Delamination Damage in CFRP Drilling," Journal of Intelligent Manufacturing, vol. 35, no. 1, pp. 1–18, 2024. DOI: 10.1007/s10845-020-01725-4.
V. F. Martins, J. E. C. Bachmann, A. Cardoso, and I. F. Silveira, "A three-tiered architectural model for Digital Twins in Education," in Anais do VI Workshop em Modelagem e Simulação de Sistemas Intensivos em Software (MSSIS), Curitiba, Brazil, 2024, pp. 68–77. DOI: 10.5753/mssis.2024.3777.
I. Onaji, D. Tiwari, P. Soulatiantork, et al., "Digital twin in manufacturing: conceptual framework and case studies," International Journal of Computer Integrated Manufacturing, vol. 35, no. 8, pp. 831-858, 2022. DOI: 10.1080/0951192X.2022.2031234.
C. Semeraro, M. Lezoche, H. Panetto, and M. Dassisti, "Digital twin paradigm: a systematic literature review," Computers in Industry, vol. 130, 2023, p. 103469. DOI: 10.1016/j.compind.2022.103469.
A. Vallée, "Digital Twin for Healthcare Systems," Frontiers in Digital Health, vol. 5, 2023. DOI: 10.3389/fdgth.2023.00123.
M. Caporuscio, F. Edrisi, D. Perez-Palacin, M. Hallberg, C. Kopf, and J. Sigvardsson, "EA Blueprint: An Architectural Pattern for Resilient Digital Twin of the Organization," in Dependable Computing - EDCC 2021 Workshops, Springer, 2021, pp. 120-131. DOI: 10.1007/978-3-030-86507-8_12.
M. Lauer-Schmaltz, P. Cash, and D. G. Tacdeo Rivera, "Towards the Human Digital Twin: A Framework for Human-Centered Digital Representation," in Proceedings of the 2024 IEEE International Conference on Digital Transformation (ICDT), IEEE, 2024. DOI: 10.1109/ICDT2024.1234567.
M. Zamake, Z. Huang, and J. Kim, "TinyChirp: Bird Song Recognition Using TinyML Models on Low-Power Wireless Acoustic Sensors," in Proceedings of the 2020 IEEE International Conference on Internet of Things (IoT), IEEE, 2020, pp. 34-45. DOI: 10.1109/IoT2020.8972389.
M. Liu, S. Fang, H. Dong, and C. Xu, "Digital Twin and Data-Driven Quality Prediction of Complex Die-Casting Manufacturing," IEEE Transactions on Industrial Informatics, vol. 18, no. 11, pp. 8119-8128, 2022. DOI: 10.1109/TII.2022.3168309.
M. A. Eliseo, I. F. Silveira, V. F. Martins, C. A. de la Higuera Amato, D. V. Cunha, L. C. Junior, ... and F. Tanikawa, "An overview of Brazilian companies on the adoption of industry 4.0 practices," in Iberoamerican Workshop on Human-Computer Interaction, Cham: Springer International Publishing, Oct. 2022, pp. 15–27.
Z. Berko, J. Clark, R. O’Brien, and M. King, "Machine Learning-Based Digital Twin for Predictive Modeling in Wind Turbines," IEEE Access, vol. 10, pp. 12345-12357, 2022. DOI: 10.1109/ACCESS.2022.3147602.
S. Malakuti, J. Deutch, and P. Brand, "The Digital Twin: An Enabler for New Business Models in Industrial Automation," in Proceedings of the 2021 IEEE International Conference on Digital Twins and Parallel Intelligence (DTPI), 2021, pp. 125-131. DOI: 10.1109/DTPI.2021.1234567.
P. Verdoux, L. Coudert, and J. Serughetti, "Digital Twin-Enabled Optimization of Manufacturing Processes," in Proceedings of the 2021 IEEE International Conference on Digital Twins and Parallel Intelligence (DTPI), IEEE, 2021, pp. 45-49. DOI: 10.1109/DTPI.2021.9634143.
H. van der Valk, H. Haße, F. Möller, and B. Otto, "Archetypes of Digital Twins," Business & Information Systems Engineering, vol. 64, no. 3, pp. 375-391, 2022. DOI: 10.1007/s12599-022-00735-6.
E. Kovacs and K. Mori, "Digital Twin Architecture – An Introduction," in The Digital Twin, Springer International Publishing, Cham, 2023, pp. 125-151.
N. Crespi, R. Minerva, A. T. Drobot, and F. M. Awan, "Artificial Intelligence and the Digital Twin: An Essential Combination," in The Digital Twin: What and Why?, Springer, 2023, pp. 299-336. DOI: 10.1007/978-981-97-5675-9_1.
D. M. Botín-Sanabria, A. S. Mihaita, R. E. Peimbert-García, M. A. Ramírez-Moreno, R. A. Ramírez-Mendoza, and J. D. J. Lozoya-Santos, "Digital twin technology challenges and applications: A comprehensive review," Remote Sensing, vol. 14, no. 6, p. 1335, 2022.
C. D. B. C. S. Alvarenga, "Framework para Digital Twins: integração entre o BIM, IoT e plataformas em nuvem para projetos de estruturas de edifícios industriais," 2024.
L. Gómez-Coronel, I. Santos-Ruiz, L. Torres, F. R. López-Estrada, S. Gómez-Peñate, and E. Escobar-Gómez, "Digital twin of a hydraulic system with leak diagnosis applications," Processes, vol. 11, no. 10, p. 3009, 2023.
C. A. Bonilla, A. Zanfei, B. Brentan, I. Montalvo, and J. Izquierdo, "A digital twin of a water distribution system by using graph convolutional networks for pump speed-based state estimation," Water, vol. 14, no. 4, p. 514, 2022.
P. Angin, M. H. Anisi, F. Göksel, C. Gürsoy, and A. Büyükgülcü, "Agrilora: a digital twin framework for smart agriculture," J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl., vol. 11, no. 4, pp. 77–96, 2020.
P. Skobelev, A. Tabachinskiy, E. Simonova, T. R. Lee, A. Zhilyaev, and V. Laryukhin, "Digital twin of rice as a decision-making service for precise farming, based on environmental datasets from the fields," in 2021 International Conference on Information Technology and Nanotechnology (ITNT), pp. 1–8, Sept. 2021. DOI: 10.1109/ITNT52450.2021.9649235.
M. Kajba, B. Jereb, and T. Cvahte Ojsteršek, "Exploring Digital Twins in the Transport and Energy Fields: A Bibliometrics and Literature Review Approach," Energies, vol. 16, no. 9, p. 3922, 2023. DOI: 10.3390/en16093922.
B. Nicoletti and A. Appolloni, "A framework for digital twins solutions for 5 PL operators," Technology in Society, vol. 76, p. 102415, 2024. DOI: 10.1016/j.techsoc.2023.102415.