Fault Detection in Transmission Lines: a Denial Constraint Approach

  • Nicolas Tamalu Universidade Federal do Paraná
  • Leandro Augusto Ensina Universidade Federal do Paraná / Universidade Tecnológica Federal do Paraná
  • Eduardo Cunha de Almeida Universidade Federal do Paraná https://orcid.org/0000-0002-6644-956X
  • Eduardo Henrique Monteiro Pena Universidade Tecnológica Federal do Paraná
  • Luiz Eduardo Soares de Oliveira Universidade Federal do Paraná

Resumo


This paper introduces an approach for discovering denial constraints (DCs) to identify faults in transmission lines. However, the considerable volume of data in the studied scenario makes traditional DC discovery impractical due to lengthy execution times. We propose an alternative DC discovery approach that uses streaming windows to address this issue. Our experiments demonstrate that the DCs identified in pre-fault windows differ significantly from those in post-fault windows. This valuable insight enables us to detect faults autonomously, eliminating the need for human intervention (i.e., an unsupervised method). The experimental evaluation featuring diverse fault events reveals that our approach achieves fault detection with remarkable 100% accuracy.
Palavras-chave: denial constraints, fault analysis, power transmission

Referências

Abedjan, Z., Golab, L., and Naumann, F. (2015). Profiling relational data: A survey. The VLDB Journal, 24(4):557–581.

Aleem, S. A., Shahid, N., and Naqvi, I. H. (2015). Methodologies in power systems fault detection and diagnosis. Energy Systems, 6(1):85–108.

Asadi Majd, A., Samet, H., and Ghanbari, T. (2017). k-nn based fault detection and classification methods for power transmission systems. Protection and Control of Modern Power Systems, 2(32):1–11.

Belagoune, S., Bali, N., Bakdi, A., Baadji, B., and Atif, K. (2021). Deep learning through lstm classification and regression for transmission line fault detection, diagnosis and location in large-scale multi-machine power systems. Measurement, 177:109330.

Braverman, V. and Ostrovsky, R. (2010). Effective computations on sliding windows. SIAM J. Comput., 39(6):2113–2131.

Chen, K., Hu, J., and He, J. (2018). Detection and classification of transmission line faults based on unsupervised feature learning and convolutional sparse autoencoder. IEEE Transactions on Smart Grid, 9(3):1748–1758.

Chu, X., Ilyas, I., and Papotti, P. (2013). Discovering denial constraints. PVLDB, 6:1498–1509.

Coban, M. and Tezcan, S. S. (2021). Detection and classification of short-circuit faults on a transmission line using current signal. Bulletin of the Polish Academy of Sciences: Technical Sciences, 69(4).

Ensina, L. A., Oliveira, L. E. S., Almeida, E. C., Santos, S. L. F., and Bernardino, L. S. (2022). Fault classification in transmission lines with generalization competence. In IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, pages 1–6.

Ferreira, V. H., Zanghi, R., Fortes, M. Z., Gomes, S., and Alves da Silva, A. P. (2020). Probabilistic transmission line fault diagnosis using autonomous neural models. Electric Power Systems Research, 185:106360.

Ferreira, V. H., Zanghi, R., Fortes, M. Z., Sotelo, G. G., da Boa Morte Silva, R., de Souza, J. C. S., Guimarães, C. H. C., and Júnior, S. G. (2016). A survey on intelligent system application to fault diagnosis in electric power system transmission lines. Electric Power Systems Research, 136:135–153.

Furse, C. M., Kafal, M., Razzaghi, R., and Shin, Y.-J. (2021). Fault diagnosis for electrical systems and power networks: A review. IEEE Sensors Journal, 21(2):888–906.

Gilbert, D. and Morrison, I. (1997). A statistical method for the detection of power system faults. International Journal of Electrical Power & Energy Systems, 19(4):269–275.

Grainger, J. J., Stevenson, W. D., and Chang, G. W. (2016). Power System Analysis. McGraw-Hill Education, 2 edition.

Høidalen, H. K., Prikler, L., and Peñaloza, F. (2019). ATPDraw version 7.0 for Windows - Users’ Manual. ATPDraw.

Mishra, D. and Ray, P. (2018). Fault detection, location and classification of a transmission line. Neural Computing and Applications, 30:1377–1424.

Pena, E. H. M., de Almeida, E. C., and Naumann, F. (2019). Discovery of approximate (and exact) denial constraints. PVLDB, 13(3):266–278.

Prasad, A., Belwin Edward, J., and Ravi, K. (2018). A review on fault classification methodologies in power transmission systems: Part—i. Journal of Electrical Systems and Information Technology, 5(1):48–60.

Raza, A., Benrabah, A., Alquthami, T., and Akmal, M. (2020). A review of fault diagnosing methods in power transmission systems. Applied Sciences, 10(4):1–27.

Singh, S. and Vishwakarma, D. N. (2015). Intelligent techniques for fault diagnosis in transmission lines — an overview. In International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE), pages 280–285.

Yadav, A. and Dash, Y. (2014). An overview of transmission line protection by artificial neural network: Fault detection, fault classification, fault location, and fault direction discrimination. Advances in Artificial Neural Systems, 2014:1–20.
Publicado
25/09/2023
TAMALU, Nicolas; ENSINA, Leandro Augusto; CUNHA DE ALMEIDA, Eduardo; PENA, Eduardo Henrique Monteiro; OLIVEIRA, Luiz Eduardo Soares de. Fault Detection in Transmission Lines: a Denial Constraint Approach. In: SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), 38. , 2023, Belo Horizonte/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 231-243. ISSN 2763-8979. DOI: https://doi.org/10.5753/sbbd.2023.231718.