Context-Aware Knowledge Graphs Exploratory Search

  • Veronica dos Santos Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
  • Edward Hermann Haeusler Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
  • Daniel Schwabe Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) https://orcid.org/0000-0003-4347-2940
  • Sergio Lifschitz Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) https://orcid.org/0000-0003-3073-3734

Resumo


The exploratory search approach recognizes that user queries can be incomplete, inaccurate, and ambiguous. This occurs both because of incomplete domain knowledge by the user or due to implicit assumptions about the context. This ongoing research aims to enrich Knowledge Graphs (KG) to support context-aware exploration through expanded queries. We propose a Contextual KG (CKG) definition and schema that characterizes the necessary elements for modeling contextual information and a query-answering approach that retrieves all (contextualized) possible answers.

Palavras-chave: Graphs, networks and semistructured data management, Information retrieval, Knowledge bases, knowledge graphs, and modeling, Web data management

Referências

Angles, R., Hogan, A., Lassila, O., et al. (2022). Multilayer graphs: a unified data model for graph databases. In GRADES-NDA, pages 11:1–11:6.

Cafezeiro, I., Haeusler, E. H., and Rademaker, A. (2008). Ontology and context. In IEEE Int. Conf. on Pervasive Computing and Communications (PerCom), pages 417–422.

Groth, P., Simperl, E., et al. (2023). Knowledge Graphs and their Role in the Knowledge Engineering of the 21st Century. Dagstuhl Reports, 12(9):60–120.

Hogan, A., Blomqvist, E., et al. (2021). Knowledge graphs. ACM Comput. Surv., 54(4).

Ilievski, F., Garijo, D., et al. (2020). KGTK: A toolkit for large knowledge graph manipulation and analysis. In ISWC, pages 278–293. Springer.

Lissandrini, M., Mottin, D., Palpanas, T., and Velegrakis, Y. (2020a). Graph-Query Suggestions for Knowledge Graph Exploration, page 2549–2555. ACM.

Lissandrini, M., Pedersen, T. B., Hose, K., and Mottin, D. (2020b). Knowledge graph exploration: Where are we and where are we going? SIGWEB Newsl.

Marchionini, G. (2006). Exploratory search: From finding to understanding. CACM, 49(4):41–46.

Patel-Schneider, P. F. (2018). Contextualization via qualifiers. In Joint Proc. of the Int. Workshops on Contextualized Knowledge Graphs, and Semantic Statistics co-located with (ISWC 2018), CEUR Workshop Proceedings. https://ceur-ws.org/.

Weikum, G. (2021). Knowledge graphs 2021: A data odyssey. PVLDB, 14(12):3233–3238.

Yahya, M., Berberich, K., Ramanath, M., and Weikum, G. (2016). Exploratory querying of extended knowledge graphs. Proc. VLDB Endow., 9(13):1521–1524.
Publicado
25/09/2023
DOS SANTOS, Veronica; HAEUSLER, Edward Hermann; SCHWABE, Daniel; LIFSCHITZ, Sergio. Context-Aware Knowledge Graphs Exploratory Search. In: SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), 38. , 2023, Belo Horizonte/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 360-365. ISSN 2763-8979. DOI: https://doi.org/10.5753/sbbd.2023.233377.