Entity Matching com Large Language Models: estudo comparativo com abordagem de Entity Blocking
Resumo
Entity Matching é fundamental para integrar dados de diferentes fontes que se referem à mesma entidade. Embora modelos Pré-Treinados que adotam técnicas de Entity Blocking sejam amplamente utilizados nessa tarefa, o avanço dos Large Language Models (LLMs) sugere novas possibilidades. Este trabalho compara o Ditto, que aplica técnicas de otimização com modelos tradicionais, com o Orca2, um LLM baseado no Llama2 voltado para raciocínio. Apesar do desempenho inicial inferior, o Orca2 demonstra potencial competitivo, sobretudo com futuras melhorias computacionais. Assim, busca-se avaliar a viabilidade dos LLMs em Entity Matching, analisando precisão e custo computacional.
Palavras-chave:
Resolução de Entidades, Blocagem de Entidades, Modelos de Linguagem, Orca2, Ditto
Referências
Arvanitis-Kasinikos, I. and Papadakis, G. (2025). Entity matching with 7b llms: A study on prompting strategies and hardware limitations. CEUR Workshop Proceedings.
Barlaug, N. and Gulla, J. A. (2021). Neural networks for entity matching: A survey. ACM Transactions on Knowledge Discovery from Data (TKDD), 15(3):1–37.
Brasileiro Araújo, T., Efthymiou, V., Christophides, V., Pitoura, E., and Stefanidis, K. (2025). Treats: Fairness-aware entity resolution over streaming data. Information Systems, 129:102506.
Christen, P. and Christen, P. (2012). Data matching systems. Data Matching: Concepts and Techniques for Record Linkage, Entity Resolution, and Duplicate Detection, pages 229–242.
Kuang, W., Qian, B., Li, Z., Chen, D., Gao, D., Pan, X., Xie, Y., Li, Y., Ding, B., and Zhou, J. (2024). Federatedscope-llm: A comprehensive package for fine-tuning large language models in federated learning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 5260–5271.
Li, Y., Li, J., Suhara, Y., Doan, A., and Tan, W.-C. (2020). Deep entity matching with pre-trained language models. Proceedings of the VLDB Endowment, 14(1):50–60.
Mitra, A., Del Corro, L., Mahajan, S., Codas, A., Simoes, C., Agarwal, S., Chen, X., Razdaibiedina, A., Jones, E., Aggarwal, K., et al. (2023). Orca 2: Teaching small language models how to reason. arXiv preprint arXiv:2311.11045.
Niven, T. and Kao, H.-Y. (2019). Probing neural network comprehension of natural language arguments. arXiv preprint arXiv:1907.07355.
Peeters, R., Der, R. C., and Bizer, C. (2023a). Wdc products: A multi-dimensional entity matching benchmark. arXiv preprint arXiv:2301.09521.
Peeters, R., Steiner, A., and Bizer, C. (2023b). Entity matching using large language models. arXiv preprint arXiv:2310.11244.
Wang, Y. and Yan, M. (2024). Unsupervised domain adaptation for entity blocking leveraging large language models. In 2024 IEEE International Conference on Big Data (BigData), pages 159–164. IEEE.
Zhang, J., Sun, H., and Ho, J. C. (2024). Emba: Entity matching using multi-task learning of bert with attention-over-attention. In EDBT, pages 281–293.
Barlaug, N. and Gulla, J. A. (2021). Neural networks for entity matching: A survey. ACM Transactions on Knowledge Discovery from Data (TKDD), 15(3):1–37.
Brasileiro Araújo, T., Efthymiou, V., Christophides, V., Pitoura, E., and Stefanidis, K. (2025). Treats: Fairness-aware entity resolution over streaming data. Information Systems, 129:102506.
Christen, P. and Christen, P. (2012). Data matching systems. Data Matching: Concepts and Techniques for Record Linkage, Entity Resolution, and Duplicate Detection, pages 229–242.
Kuang, W., Qian, B., Li, Z., Chen, D., Gao, D., Pan, X., Xie, Y., Li, Y., Ding, B., and Zhou, J. (2024). Federatedscope-llm: A comprehensive package for fine-tuning large language models in federated learning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 5260–5271.
Li, Y., Li, J., Suhara, Y., Doan, A., and Tan, W.-C. (2020). Deep entity matching with pre-trained language models. Proceedings of the VLDB Endowment, 14(1):50–60.
Mitra, A., Del Corro, L., Mahajan, S., Codas, A., Simoes, C., Agarwal, S., Chen, X., Razdaibiedina, A., Jones, E., Aggarwal, K., et al. (2023). Orca 2: Teaching small language models how to reason. arXiv preprint arXiv:2311.11045.
Niven, T. and Kao, H.-Y. (2019). Probing neural network comprehension of natural language arguments. arXiv preprint arXiv:1907.07355.
Peeters, R., Der, R. C., and Bizer, C. (2023a). Wdc products: A multi-dimensional entity matching benchmark. arXiv preprint arXiv:2301.09521.
Peeters, R., Steiner, A., and Bizer, C. (2023b). Entity matching using large language models. arXiv preprint arXiv:2310.11244.
Wang, Y. and Yan, M. (2024). Unsupervised domain adaptation for entity blocking leveraging large language models. In 2024 IEEE International Conference on Big Data (BigData), pages 159–164. IEEE.
Zhang, J., Sun, H., and Ho, J. C. (2024). Emba: Entity matching using multi-task learning of bert with attention-over-attention. In EDBT, pages 281–293.
Publicado
29/09/2025
Como Citar
BOLCONTE DONATO, Rodolfo; BRASILEIRO ARAÚJO, Tiago.
Entity Matching com Large Language Models: estudo comparativo com abordagem de Entity Blocking. In: SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), 40. , 2025, Fortaleza/CE.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 956-962.
ISSN 2763-8979.
DOI: https://doi.org/10.5753/sbbd.2025.247828.
