Comparative Analysis of YouTube Channels using Complex Networks

Abstract


How to compare two YouTube channels? Determining similar users on a social network is an increasingly important task, as it allows the personalization of the offer and consumption of content, with application in the areas of marketing and business intelligence, for example. Most existing methods in the literature to identify similarity between users are based only on published and consumed content. This work proposes a method that uses complex networks to compare YouTube channels, implemented in an automated tool. The results obtained show that it is possible to identify similarity based on the capacity to influence and the interconnection between channels.
Keywords: complex networks analysis, online social networks, user profile detection

References

Balakrishnan, J. and Griffiths, M. D. (2017). Social media addiction: What is the role of content in youtube? Journal of behavioral addictions, 6(3):364–377.

Barabasi, A.-L. and Posfai, M. (2016). Network science. Cambridge University Press, Cambridge.

Bastian, M., Heymann, S., and Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks.

Chitra, U. and Musco, C. (2020). Analyzing the impact of filter bubbles on social network polarization. In Proceedings of the 13th International Conference on Web Search and Data Mining, WSDM ’20, page 115–123, New York, NY, USA. Association for Computing Machinery.

Covington, P., Adams, J., and Sargin, E. (2016). Deep neural networks for youtube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems, RecSys ’16, page 191–198. Association for Computing Machinery.

Li, W. and Yang, J.-Y. (2009). Comparing networks from a data analysis perspective. In Zhou, J., editor, Complex Sciences, pages 1907–1916, Berlin, Heidelberg. Springer Berlin Heidelberg.

Lopes, K. V. R. (2022). Recuperação da informação em vídeos do youtube. Trabalho de Conclusão de Curso (Graduação em Sistemas de Informação) Universidade Federal de Uberlândia.

Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., and Bhattacharjee, B. (2007). Measurement and analysis of online social networks. IMC ’07, page 29–42, New York, NY, USA. Association for Computing Machinery.

Tantardini, M., Ieva, F., Tajoli, L., and Piccardi, C. (2019). Comparing methods for comparing networks. Scientific Reports, 9.

Teixeira, Marcela C.; REIS, J. C. S. (2023). Análise do discurso de Ódio em comentários de vídeos no youtube: Um estudo de caso da cpi da covid-19 no brasil. In SIMPÓSIO BRASILEIRO DE BANCO DE DADOS (SBBD), page 330–335. Sociedade Brasileira de Computação.

Vasconcelos, M., Pereira, E., Guimarães, S., Ribeiro, M. H., Melo, P., and Benevenuto, F. (2020). Analyzing youtube videos shared on whatsapp in the early covid-19 crisis. WebMedia ’20, page 25–28, New York, NY, USA. Association for Computing Machinery.

Wang, X., Wu, P., Wang, F., and Wu, T. (2020). Collaborative filtering via social learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(4):1234–1247.
Published
2024-10-14
SANTOS, Phelipe Rodovalho dos; PEREIRA, Fabíola S. F.. Comparative Analysis of YouTube Channels using Complex Networks. In: WORKSHOP ON UNDERGRADUATE STUDENT WORK (WTAG) - BRAZILIAN SYMPOSIUM ON DATABASES (SBBD), 39. , 2024, Florianópolis/SC. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 22-28. DOI: https://doi.org/10.5753/sbbd_estendido.2024.243711.