Ontology for Automated Qualitative Analysis in Higher Education Course Evaluations

Abstract


This work presents the development and application of ontology to represent teacher and student evaluation data in Computer Science courses. The proposal structures evaluation criteria, comments, scores, and sentiments extracted through Natural Language Processing (NLP). Using OWL and the Protégé tool, the ontological base was built with real data from a public university in southern Brazil. Sentiment analysis, performed with the LeIA model in Python, enabled the identification of patterns that support the improvement of educational quality. The approach proved effective in organizing and extracting educational knowledge.

Keywords: Ontologies, Qualitative Analysis, Higher Education, Evaluation

References

Altrabsheh, N., Cocea, M., & Fallahkhair, S. (2014). Sentiment analysis: towards a tool for analysing real-time student feedback. In Proceedings of the 2014 ACM Conference on Learning@ Scale (pp. 1–2).

Aroyo, L., & Dicheva, D. (2004). The new challenges for e-learning: the educational semantic web. Educational Technology & Society, 7(4), 59–69.

Chatti, M. A., Dyckhoff, A. L., Schroeder, U., & Thüs, H. (2012). A reference model for learning analytics. International Journal of Technology Enhanced Learning, 4(5-6), 318–331.

Ferreira, A. L., Silva, D. A., & Andrade, D. F. (2018). Análise textual de comentários em avaliações discentes. Ensaio: Avaliação e Políticas Públicas em Educação, 26(98), 5–27.

Gil, A. C. (2008). Métodos e técnicas de pesquisa social. Atlas.

Gonzalez, G. J., Behar, P. A., & Lima, J. F. (2020). Ontologias e tecnologias educacionais: uma proposta para avaliação da aprendizagem. Revista Brasileira de Informática na Educação, 28(3), 43–67.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2), 199–220.

Leal, J. P., & Reategui, E. (2020). Semantic technologies for educational data and learning analytics. Education and Information Technologies, 25, 2863–2881.

Minayo, M. C. S. (2001). Pesquisa social: teoria, método e criatividade. Vozes.

Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to creating your first ontology. Stanford Knowledge Systems Laboratory Technical Report KSL01-05.

Ontañón, S., Plaza, E., & Santos, A. (2015). Semantic reasoning and context-aware learning. Computers in Human Behavior, 47, 106–114.

Prieto, L. P., Sharma, K., Dillenbourg, P., & Jesús, M. (2019). Teaching analytics: towards automatic extraction of orchestration graphs using wearable sensors. Journal of Learning Analytics, 6(1), 91–107.

Vega-Gorgojo, G., Álvarez, J. M., & Gómez-Pérez, A. (2011). Semantically-enabled authoring of adaptive learning designs. Computers & Education, 57(3), 2244–2260.

Chounta, I. A., Gotsoulia, K., Avouris, N., & Martínez-Monés, A. (2017). Using ontologies to integrate learning design and learning analytics. Journal of Learning Analytics, 4(3), 194–212.
Published
2025-09-29
DANIEL, Eulanda Maria Pedro; WIVES, Leandro Krug; LORANDI, Alexandra; OLIVEIRA, José Palazzo Moreira de. Ontology for Automated Qualitative Analysis in Higher Education Course Evaluations. In: LLMS, GRAPH ANALYSIS, AND ONTOLOGIES (LAGO) - BRAZILIAN SYMPOSIUM ON DATABASES (SBBD), 40. , 2025, Fortaleza/CE. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 371-381. DOI: https://doi.org/10.5753/sbbd_estendido.2025.247564.