Reconhecimento de Padrões em Dados de Expressão Gênica de Pacientes Portadores de Osteogênese Imperfeita
Abstract
The growing production of molecular data made possible by advances in laboratory technologies has motivated research related to analysis supported by mathematical and computational models. This paper discusses the use of clustering algorithms for gene expression data analysis of patients with Osteogenesis Imperfecta, which aims to assess the relationship between the grounds of the models and biological relevance of clusters obtained by different algorithms.
References
Frey, B. J. and Dueck, D. (2007). Clustering by Passing Messages Between Data Points. Science, 315(February):972–976.
Haykin, S. (1999). Neural Networks: A comprehensive foundation. Prentice-Hall, New Jersey, 2 edition.
Kaneto, C. M. (2011). Análise da Express˜ao Gênica durante a diferenciação osteogênica de células mesenquimais estromais de medula óssea de pacientes portadores de Osteogênese Imperfeita. Tese de doutorado, Faculdade de Medicina de Ribeir˜ao Preto/USP.
Lodish, H., Arnold Berk, Matsudaira, P., Keiser, C. A., Krieger, M., Scott, M. P., Zipursky, L., and James Darnell (2003). Molecular Cell Biology. W. H. Freeman, 5 edition.
Quackenbush, J. (2001). COMPUTATIONAL ANALYSIS OF MICROARRAY DATA.
Nature reviews. Genetics, 2(June):418–427.
Theodoridis, S. an
