Reconhecimento de Padrões em Dados de Expressão Gênica de Pacientes Portadores de Osteogênese Imperfeita

  • Diogo de Novais UESC
  • Carla Kaneto UESC
  • Paulo Ambrósio UESC

Abstract


The growing production of molecular data made possible by advances in laboratory technologies has motivated research related to analysis supported by mathematical and computational models. This paper discusses the use of clustering algorithms for gene expression data analysis of patients with Osteogenesis Imperfecta, which aims to assess the relationship between the grounds of the models and biological relevance of clusters obtained by different algorithms.

References

Dougherty, E. R. (2005). The fundamental role of pattern recognition for geneexpression/ microarray data in bioinformatics. Pattern Recognition, 38(12):2226–2228.

Frey, B. J. and Dueck, D. (2007). Clustering by Passing Messages Between Data Points. Science, 315(February):972–976.

Haykin, S. (1999). Neural Networks: A comprehensive foundation. Prentice-Hall, New Jersey, 2 edition.

Kaneto, C. M. (2011). Análise da Express˜ao Gênica durante a diferenciação osteogênica de células mesenquimais estromais de medula óssea de pacientes portadores de Osteogênese Imperfeita. Tese de doutorado, Faculdade de Medicina de Ribeir˜ao Preto/USP.

Lodish, H., Arnold Berk, Matsudaira, P., Keiser, C. A., Krieger, M., Scott, M. P., Zipursky, L., and James Darnell (2003). Molecular Cell Biology. W. H. Freeman, 5 edition.

Quackenbush, J. (2001). COMPUTATIONAL ANALYSIS OF MICROARRAY DATA.

Nature reviews. Genetics, 2(June):418–427.

Theodoridis, S. an
Published
2015-07-20
DE NOVAIS, Diogo; KANETO, Carla; AMBRÓSIO, Paulo. Reconhecimento de Padrões em Dados de Expressão Gênica de Pacientes Portadores de Osteogênese Imperfeita. In: BRAZILIAN SYMPOSIUM ON COMPUTING APPLIED TO HEALTH (SBCAS), 15. , 2015, Recife. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2015 . p. 233-236. ISSN 2763-8952. DOI: https://doi.org/10.5753/sbcas.2015.10390.