Multicenter Validation of Convolutional Neural Networks for Automated Detection of Cardiomegaly on Chest Radiographs

  • Diego Cardenas INCOR
  • José Ferreira Junior INCOR
  • Ramon Moreno INCOR
  • Marina Rebelo INCOR
  • José Krieger INCOR
  • Marco Gutierrez INCOR

Resumo


This work focused on validating five convolutional neural network models to detect automatically cardiomegaly, a health complication that causes heart enlargement, which may lead to cardiac arrest. To do that, we trained the models with a customized multilayer perceptron. Radiographs from two public datasets were used in experiments, one of them only for external validation. Images were pre-processed to contain just the chest cavity. The EfficientNet model yielded the highest area under the curve (AUC) of 0.91 on the test set. However, the Inception-based model obtained the best generalization performance with AUC of 0.88 on the independent multicentric dataset. Therefore, this work accurately validated radiographic models to identify patients with cardiomegaly.

Referências

Amin, H. and Siddiqui, W. J. (2019). Cardiomegaly. StatPearls Publishing.

Bui, A. L., Horwich, T. B., and Fonarow, G. C. (2011). Epidemiology and risk profile of heart failure. Nature Reviews Cardiology, 8(1):30.

Bustos, A., Pertusa, A., Salinas, J.-M., and de la Iglesia-Vaya, M. (2019). Padchest: A large chest x-ray image dataset with multi-label annotated reports. arXiv preprint arXiv:1901.07441.

Candemir, S., Rajaraman, S., Thoma, G., and Antani, S. (2018). Deep learning for grading cardiomegaly severity in chest x-rays: an investigation. In 2018 IEEE Life Sciences Conference (LSC), pages 109–113.

Chamveha, I., Promwiset, T., Tongdee, T., Saiviroonporn, P., and Chaisangmongkon, W. (2020). Automated cardiothoracic ratio calculation and cardiomegaly detection using deep learning approach. arXiv preprint arXiv:2002.07468.

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1251–1258.

Demner-Fushman, D., Kohli, M. D., Rosenman, M. B., Shooshan, S. E., Rodriguez, L., Antani, S., Thoma, G. R., and McDonald, C. J. (2015). Preparing a collection of radiology examinations for distribution and retrieval. Journal of the American Medical Informatics Association, 23(2):304–310.

Ferreira Junior, J. R., Cardenas, D. A. C., Moreno, R. A., Rebelo, M. F. S., Krieger, J. E., and Gutierrez, M. A. (2020a). Multi-view ensemble convolutional neural network to improve classification of pneumonia in low contrast chest x-ray images. In 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society. Accepted for publication.

Ferreira Junior, J. R., Santos, M. K., Tenorio, A. P. M., Faleiros, M. C., Cipriano, F.é. G., Fabro, A. T., Nappi, J., Yoshida, H., and Azevedo Marques, P. M. (2020b). CT-¨ based radiomics for prediction of histologic subtype and metastatic disease in primary malignant lung neoplasms. International Journal of Computer Assisted Radiology and Surgery, 15:163–172.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4700–4708.

International Medical Device Regulators Forum (2013). Software as a Medical Device (SaMD): Key Definitions. Last access on March 5th, 2020.

Available at http://www.imdrf.org/docs/imdrf/final/technical/ imdrf-tech-131209-samd-key-definitions-140901.pdf.

Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., Marklund, H., Haghgoo, B., Ball, R., Shpanskaya, K., et al. (2019). CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison. arXiv preprint arXiv:1901.07031.

Koenigkam-Santos, M., Ferreira Junior, J. R., Wada, D. T., Tenorio, A. P. M., Barbosa, M. H. N., and Azevedo Marques, P. M. (2019). Artificial intelligence, machine learning, computer-aided diagnosis, and radiomics: advances in imaging towards to precision medicine. Radiologia Brasileira, 52(6):387–396.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436– 444.

Li, Z., Hou, Z., Chen, C., Hao, Z., An, Y., Liang, S., and Lu, B. (2019). Automatic cardiothoracic ratio calculation with deep learning. IEEE Access, 7:37749–37756.

Liang, G. and Zheng, L. (2019). A transfer learning method with deep residual network for pediatric pneumonia diagnosis. Computer Methods and Programs in Biomedicine. Ahead of print. DOI:10.1016/j.cmpb.2019.06.023.

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(Nov):2579–2605.

Mayo Foundation for Medical Education and Research (2020). Enlarged heart. Last access on Feb 28th, 2020. Available at https://www.mayoclinic. org/diseases-conditions/enlarged-heart/symptoms-causes/ syc-20355436.

Oakden-Rayner, L. (2020). Exploring large-scale public medical image datasets. Academic Radiology, 27(1):106–112.

Pazhitnykh, I. and Petsiuk, V. (2017). Lung segmentation (2D). https://github. com/imlab-uiip/lung-segmentation-2d.

Que, Q., Tang, Z., Wang, R., Zeng, Z., Wang, J., Chua, M., Gee, T. S., Yang, X., and Veeravalli, B. (2018). CardioXNet: automated detection for cardiomegaly based on deep learning. In 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 612–615.

Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., Shpanskaya, K., et al. (2017). CheXNet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 234–241.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3):211–252.

Sabottke, C. F. and Spieler, B. M. (2020). The effect of image resolution on deep learning in radiography. Radiology: Artificial Intelligence, 2(1):e190015.

Springenberg, J., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2015). Striving for simplicity: The all convolutional net. In Proceedings of the 3rd International Conference on Learning Representations, page arXiv:1412.6806.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2818–2826.

Tan, M. and Le, Q. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning, pages 6105–6114.

Wang, H., Jia, H., Lu, L., and Xia, Y. (2020). Thorax-Net: An attention regularized deep neural network for classification of thoracic diseases on chest radiography. IEEE Journal of Biomedical and Health Informatics, 24:475–485.

Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., and Summers, R. M. (2017). ChestXRay8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2097–2106.
Publicado
15/09/2020
Como Citar

Selecione um Formato
CARDENAS, Diego; FERREIRA JUNIOR, José; MORENO, Ramon; REBELO, Marina; KRIEGER, José; GUTIERREZ, Marco. Multicenter Validation of Convolutional Neural Networks for Automated Detection of Cardiomegaly on Chest Radiographs. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 20. , 2020, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 179-190. ISSN 2763-8952. DOI: https://doi.org/10.5753/sbcas.2020.11512.