Análise de Redes Neurais Convolucionais e Técnicas de Pré-processamento para Identificação de Dentes Serotinos com Cistos
Resumo
A extração dos terceiros molares está sempre em debate entre dentistas, isto porque podem surgir patologias com a sua permanência. Visando auxiliar no diagnóstico o presente trabalho procura automatizar a detecção de terceiros molares com cistos em imagens de radiografias. Para isso, são analisadas duas arquiteturas de Redes Neurais Convolucionais (CNN) para a classificação e experimentadas com técnicas de pré-processamento de imagem. Uma destas propostas, com uso de contraste morfológico, obteve melhor performance, com destaque à precisão de 0,93 e F1-score de 0,84. Os resultados demonstram que a proposta permite automatização no diagnóstico de cistos.
Referências
Slootweg, P. J. (1987). Carcinoma arising from reduced enamel epithelium. Journal of Oral Pathology, 16(10): 479 – 482, doi: 10.1111/j.1600-0714.1987.tb00676.x.
Ulaganathan, G., Banumathi, A., Amutha, J. J. and Jeevani Selvabala, A. (2012). Dental Cyst Delineation Using Live Wire Algorithm. In 2012 International Conference on Machine Vision and Image Processing (MVIP), pages 129 – 132, doi: 10.1109/MVIP.2012.6428777.
Salehinejad, J., Saghafi, S. and Ghazi, N. (2013). Glandular odontogenic cyst associated with an impacted tooth. Journal of Dental Materials and Techniques, 2: 99 – 103, doi: 10.22038/JDMT.2013.1053.
Patil, S. (2013). Prevalence and type of pathological conditions associated with unerupted and retained third molars in the western Indian population. Journal of Cranio-Maxillofacial Surgery, 2(1): 3 – 4.
Birdal, R. G., Gumus, E., Sertbas, A. and Birdal, I. S. (2016). Automated lesion detection in panoramic dental radiographs. Oral Radiology, 32(1): 111 – 118, doi: 10.1007/s11282-015-0222-8.
Banar, N., Bertels, J., Laurent, F., Boedi, R. M., Tobel, J. D., Thevissen, P. and Vandermeulen, P. (2020). Towards fully automated third molar development staging in panoramic radiographs. International Journal of Legal Medicine, 134(1): 1831–1841, doi: 10.1007%2Fs00414-020-02283-3.
Divya, K. V., Jatti, A., Joshi, R. and Krishna, S. D. (2017). Characterization of dental pathologies using digital panoramic X-ray images based on texture analysis. In 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 11 – 15, doi: 10.1109/EMBC.2017.8036894.
Lee, J. H., Kim, D. H. and Jeong, S. N. (2020). Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral diseases, 26(1): 152 – 158, doi: 10.1111/odi.13223.
Devi, R. K., Banumathi, A., Sangavi, G. and Dawood, M. S. (2020). A Novel Region Based Thresholding for Dental Cyst Extraction in Digital Dental X-Ray Images. New Trends in Computational Vision and Bio-inspired Computing, pages 1633 – 1640, doi: 10.1007/978-3-030-41862-5_167.
Kwon, O., Yong, T. H., Kang, S. R., Kim, J. E., Huh, K. H., Heo, M. S., Lee, S. S., Choi, S. C. and Yi, W. J. (2020). Automatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural network. Dentomaxillofacial Radiology, 49(8): 20200185, doi: 10.1259/dmfr.20200185.
Birdal, R. G., Gumus, E., Sertbas, A. and Birdal, I. S. (2015). Automated lesion detection in panoramic dental radiographs. Oral Radiology, 32(2): 111 – 118, doi: 10.1007/s11282-015-0222-8.
Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep learning. [S.l.]: MIT press.
LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998). Gradient-based learning applied to document recognition. In Proceedings of the IEEE, 86(11): 2278 – 2324.
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X. Wang, G., Cai, J. and Chen, T. (2017). Recent advances in convolutional neural networks. Pattern Recognition, 77(1): 354 – 377, doi: https://doi.org/10.1016/j.patcog.2017.10.013