Classificação Automática de Tecido Estromal em Imagens da Próstata Baseada em Descritores de Textura
Resumo
Esse artigo apresenta um sistema automático de classificação de tecido estromal em imagens da próstata baseado em descritores de textura. Foram avaliados tecidos das classes normal, hiperplasia e câncer. Inicialmente, foi realizada a segmentação do tecido estromal e extração de regiões de interesse (ROI’s). Então, foi aplicada a decomposição wavelet nas ROI’s. Em seguida, foram extraidos os descritores de Haralick e SVD. Um método de seleção de características baseado em algoritmo genético foi aplicado. Por fim, a classificação foi realizada utilizando algoritmo Random Forest. A área sob a curva ROC (AUC) foi calculada. Para as classes normal versus câncer, normal 1262 versus hiperplasia e hiperplasia versus câncer, foram alcançados os valores de AUC 0, 962, 0, 836 e 0, 886, respectivamente.Referências
Arivazhagan, S. and Ganesan, L. (2003). Texture segmentation using wavelet transform. Pattern Recognition Letters, 24(16):3197–3203.
Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.
Diamond, J., Anderson, N. H., Bartels, P. H., Montironi, R., and Hamilton, P. W. (2004). The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia. Human Pathology, 35(9):1121–1131.
Doyle, S., Madabhushi, A., Feldman, M., and Tomaszeweski, J. (2006). A boosting cascade for automated detection of prostate cancer from digitized histology. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006, pages 504–511. Springer.
Epstein, J. and Netto, G. (2007). Biopsy interpretation of the prostate. Lippincott Williams & Wilkins.
Gurcan, M., Boucheron, L., Can, A., Madabhushi, A., Rajpoot, N., and Yener, B. (2009). Histopathological image analysis: A review. Biomedical Engineering, IEEE Reviews in, 2:147–171.
Hall, M. A. (1999). Correlation-based feature selection for machine learning. PhD thesis, The University of Waikato.
Haralick, R. M., Shanmugam, K., and Dinstein, I. H. (1973). Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions on, (6):610–621.
INCA (2011). Estimativa 2012: Incidência de Câncer no Brasil. Technical report, Instituto Nacional de Câncer.
Junqueira, L. and Carneiro, J. (2008). Junqueira’s basic histology: text & atlas. Guanabara Koogan, 11 edition.
Ko, B. C., Kim, S. H., and Nam, J.-Y. (2011). X-ray image classification using random forests with local wavelet-based cs-local binary patterns. Journal of Digital Imaging, 24(6):1141–1151.
Mallat, S. (1999). A wavelet tour of signal processing.
Nguyen, K., Sabata, B., and Jain, A. K. (2012). Prostate cancer grading: Gland segmentation and structural features. Pattern Recognition Letters, 33(7):951–961.
Oliveira, D., Nascimento, M., Neves, L., Godoy, M., and Arruda, PFF, N. D. (2012a). Algoritmo para segmentação de lumens glandulares em tecidos da próstata. In Anais do XXIII Congresso Brasileiro em Engenharia Biomédica XXIII CBEB.
Oliveira, D., Nascimento, M., Neves, L., Godoy, M., and Arruda, PFF, N. D. (2012b). Segmentation of cell nuclei regions in epithelium of prostate glands. Journal of Modelling and Simulation of Systems, (3):21.
Paolone, D. R. (2010). Benign prostatic hyperplasia. Clinics in geriatric medicine, 26(2).
Pedrini, H. and Schwartz, W. R. (2008). Análise de imagens digitais: princípios, algoritmos e aplicações. Thomson Learning.
Ramos, R. P., Nascimento, M. Z. d., and Pereira, D. C. (2012). Texture extraction: An evaluation of ridgelet, wavelet and co-occurrence based methods applied to mammograms. Expert Systems with Applications.
Simon, C. P., Blume, L., and Doering, C. I. (2004). Matemática para economistas. Bookman.
Witten, I. H. and Frank, E. (2005). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann.
Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.
Diamond, J., Anderson, N. H., Bartels, P. H., Montironi, R., and Hamilton, P. W. (2004). The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia. Human Pathology, 35(9):1121–1131.
Doyle, S., Madabhushi, A., Feldman, M., and Tomaszeweski, J. (2006). A boosting cascade for automated detection of prostate cancer from digitized histology. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006, pages 504–511. Springer.
Epstein, J. and Netto, G. (2007). Biopsy interpretation of the prostate. Lippincott Williams & Wilkins.
Gurcan, M., Boucheron, L., Can, A., Madabhushi, A., Rajpoot, N., and Yener, B. (2009). Histopathological image analysis: A review. Biomedical Engineering, IEEE Reviews in, 2:147–171.
Hall, M. A. (1999). Correlation-based feature selection for machine learning. PhD thesis, The University of Waikato.
Haralick, R. M., Shanmugam, K., and Dinstein, I. H. (1973). Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions on, (6):610–621.
INCA (2011). Estimativa 2012: Incidência de Câncer no Brasil. Technical report, Instituto Nacional de Câncer.
Junqueira, L. and Carneiro, J. (2008). Junqueira’s basic histology: text & atlas. Guanabara Koogan, 11 edition.
Ko, B. C., Kim, S. H., and Nam, J.-Y. (2011). X-ray image classification using random forests with local wavelet-based cs-local binary patterns. Journal of Digital Imaging, 24(6):1141–1151.
Mallat, S. (1999). A wavelet tour of signal processing.
Nguyen, K., Sabata, B., and Jain, A. K. (2012). Prostate cancer grading: Gland segmentation and structural features. Pattern Recognition Letters, 33(7):951–961.
Oliveira, D., Nascimento, M., Neves, L., Godoy, M., and Arruda, PFF, N. D. (2012a). Algoritmo para segmentação de lumens glandulares em tecidos da próstata. In Anais do XXIII Congresso Brasileiro em Engenharia Biomédica XXIII CBEB.
Oliveira, D., Nascimento, M., Neves, L., Godoy, M., and Arruda, PFF, N. D. (2012b). Segmentation of cell nuclei regions in epithelium of prostate glands. Journal of Modelling and Simulation of Systems, (3):21.
Paolone, D. R. (2010). Benign prostatic hyperplasia. Clinics in geriatric medicine, 26(2).
Pedrini, H. and Schwartz, W. R. (2008). Análise de imagens digitais: princípios, algoritmos e aplicações. Thomson Learning.
Ramos, R. P., Nascimento, M. Z. d., and Pereira, D. C. (2012). Texture extraction: An evaluation of ridgelet, wavelet and co-occurrence based methods applied to mammograms. Expert Systems with Applications.
Simon, C. P., Blume, L., and Doering, C. I. (2004). Matemática para economistas. Bookman.
Witten, I. H. and Frank, E. (2005). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann.
Publicado
23/07/2013
Como Citar
OLIVEIRA, Domingos L. L.; NASCIMENTO, Marcelo Z.; NEVES, Leandro A.; GODOY, Moarcir F.; DUARTE, Yan A. S.; ARRUDA, Pedro F. F.; S. NETO, Dalisio.
Classificação Automática de Tecido Estromal em Imagens da Próstata Baseada em Descritores de Textura. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 13. , 2013, Maceió/AL.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2013
.
p. 1262-1271.
ISSN 2763-8952.