On the Performance of Composite 1D-to-2D Projections for Signal Quality Assessment
Resumo
Signal quality assessment is essential for health monitoring applications, as good signal quality is needed to reliably inform about the medical conditions of the patient. To achieve this, machine learning algorithms such as convolutional neural networks may be applied. However, the signal needs to be transformed into a 2D representation, which can be done using time series imaging techniques such as Gramian Angular Field (GAF), Markov Transition Field (MTF), and Recurrence Plot (RP), as well as by aggregating their results, which we refer to as Projection Mix. After preprocessing the dataset, Brno University of Technology Smartphone PPG (BUTPPG), into these images, various convolutional neural networks were trained and tested using such data, while also selecting hyperparameters through heuristic searching. The results indicate that our proposal performed better than the state-of-the-art methods.Referências
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A nextgeneration hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19, page 2623–2631, New York, NY, USA. Association for Computing Machinery.
Alam, S., Gupta, R., and Sharma, K. D. (2021). On-board signal quality assessment guided compression of photoplethysmogram for personal health monitoring. IEEE Transactions on Instrumentation and Measurement, 70:1–9.
Campanharo, A. S., Sirer, M. I., Malmgren, R. D., Ramos, F. M., and Amaral, L. A. N. (2011). Duality between time series and networks. PloS one, 6(8):e23378.
Eckmann, J.-P., Kamphorst, S. O., and Ruelle, D. (1987). Recurrence plots of dynamical systems. Europhysics Letters, 4(9):973.
Elgendi, M. (2016). Optimal signal quality index for photoplethysmogram signals. Bioengineering, 3(4):21.
Faouzi, J. and Janati, H. (2020). pyts: A python package for time series classification. Journal of Machine Learning Research, 21(46):1–6.
Freitas, P., Lima, R., Lucafo, G., and Penatti, O. (2023a). Photoplethysmogram signal quality assessment via 1d-to-2d projections and vision transformers.
Freitas, P. G., De Lima, R. G., Lucafo, G. D., and Penatti, O. A. B. (2023b). Assessing the quality of photoplethysmograms via gramian angular fields and vision transformer. In 2023 31st European Signal Processing Conference (EUSIPCO), pages 1035–1039.
Kaptoge, S., Pennells, L., De Bacquer, D., Cooney, M. T., Kavousi, M., Stevens, G., Riley, L. M., Savin, S., Khan, T., Altay, S., et al. (2019). World health organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. The Lancet global health, 7(10):e1332–e1345.
Lemaître, G., Nogueira, F., and Aridas, C. K. (2017). Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research, 18(17):1–5.
Li, Q. and Clifford, G. D. (2012). Dynamic time warping and machine learning for signal quality assessment of pulsatile signals. Physiological measurement, 33(9):1491.
Marwan, N. (2008). A historical review of recurrence plots. The European Physical Journal Special Topics, 164(1):3–12.
Naeini, E. K., Sarhaddi, F., Azimi, I., Liljeberg, P., Dutt, N., and Rahmani, A. M. (2023). A deep learning–based ppg quality assessment approach for heart rate and heart rate variability. ACM Transactions on Computing for Healthcare, 4(4):1–22.
Nemcova, A., Vargova, E., Smisek, R., Marsanova, L., Smital, L., and Vitek, M. (2021). Brno university of technology smartphone ppg database (but ppg): Annotated dataset for ppg quality assessment and heart rate estimation. BioMed Research International.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library. Curran Associates Inc., Red Hook, NY, USA.
Pereira, T., Gadhoumi, K., Ma, M., Liu, X., Xiao, R., Colorado, R. A., Keenan, K. J., Meisel, K., and Hu, X. (2019). A supervised approach to robust photoplethysmography quality assessment. IEEE journal of biomedical and health informatics, 24(3):649–657.
Reddy, G. N. K., Manikandan, M. S., and Murty, N. N. (2020). On-device integrated ppg quality assessment and sensor disconnection/saturation detection system for iot health monitoring. IEEE Transactions on Instrumentation and Measurement, 69(9):6351–6361.
Schmith, J., Kelsch, C., Cunha, B. C., Prade, L. R., Martins, E. A., Keller, A. L., and de Figueiredo, R. M. (2023). Photoplethysmography signal quality assessment using attractor reconstruction analysis. Biomedical Signal Processing and Control, 86:105142.
Vadrevu, S. and Manikandan, M. S. (2019). Real-time ppg signal quality assessment system for improving battery life and false alarms. IEEE transactions on circuits and systems II: express briefs, 66(11):1910–1914.
Wang, Z. and Oates, T. (2015). Imaging time-series to improve classification and imputation. In Proceedings of the 24th International Conference on Artificial Intelligence, pages 3939–3945.
Alam, S., Gupta, R., and Sharma, K. D. (2021). On-board signal quality assessment guided compression of photoplethysmogram for personal health monitoring. IEEE Transactions on Instrumentation and Measurement, 70:1–9.
Campanharo, A. S., Sirer, M. I., Malmgren, R. D., Ramos, F. M., and Amaral, L. A. N. (2011). Duality between time series and networks. PloS one, 6(8):e23378.
Eckmann, J.-P., Kamphorst, S. O., and Ruelle, D. (1987). Recurrence plots of dynamical systems. Europhysics Letters, 4(9):973.
Elgendi, M. (2016). Optimal signal quality index for photoplethysmogram signals. Bioengineering, 3(4):21.
Faouzi, J. and Janati, H. (2020). pyts: A python package for time series classification. Journal of Machine Learning Research, 21(46):1–6.
Freitas, P., Lima, R., Lucafo, G., and Penatti, O. (2023a). Photoplethysmogram signal quality assessment via 1d-to-2d projections and vision transformers.
Freitas, P. G., De Lima, R. G., Lucafo, G. D., and Penatti, O. A. B. (2023b). Assessing the quality of photoplethysmograms via gramian angular fields and vision transformer. In 2023 31st European Signal Processing Conference (EUSIPCO), pages 1035–1039.
Kaptoge, S., Pennells, L., De Bacquer, D., Cooney, M. T., Kavousi, M., Stevens, G., Riley, L. M., Savin, S., Khan, T., Altay, S., et al. (2019). World health organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. The Lancet global health, 7(10):e1332–e1345.
Lemaître, G., Nogueira, F., and Aridas, C. K. (2017). Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research, 18(17):1–5.
Li, Q. and Clifford, G. D. (2012). Dynamic time warping and machine learning for signal quality assessment of pulsatile signals. Physiological measurement, 33(9):1491.
Marwan, N. (2008). A historical review of recurrence plots. The European Physical Journal Special Topics, 164(1):3–12.
Naeini, E. K., Sarhaddi, F., Azimi, I., Liljeberg, P., Dutt, N., and Rahmani, A. M. (2023). A deep learning–based ppg quality assessment approach for heart rate and heart rate variability. ACM Transactions on Computing for Healthcare, 4(4):1–22.
Nemcova, A., Vargova, E., Smisek, R., Marsanova, L., Smital, L., and Vitek, M. (2021). Brno university of technology smartphone ppg database (but ppg): Annotated dataset for ppg quality assessment and heart rate estimation. BioMed Research International.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library. Curran Associates Inc., Red Hook, NY, USA.
Pereira, T., Gadhoumi, K., Ma, M., Liu, X., Xiao, R., Colorado, R. A., Keenan, K. J., Meisel, K., and Hu, X. (2019). A supervised approach to robust photoplethysmography quality assessment. IEEE journal of biomedical and health informatics, 24(3):649–657.
Reddy, G. N. K., Manikandan, M. S., and Murty, N. N. (2020). On-device integrated ppg quality assessment and sensor disconnection/saturation detection system for iot health monitoring. IEEE Transactions on Instrumentation and Measurement, 69(9):6351–6361.
Schmith, J., Kelsch, C., Cunha, B. C., Prade, L. R., Martins, E. A., Keller, A. L., and de Figueiredo, R. M. (2023). Photoplethysmography signal quality assessment using attractor reconstruction analysis. Biomedical Signal Processing and Control, 86:105142.
Vadrevu, S. and Manikandan, M. S. (2019). Real-time ppg signal quality assessment system for improving battery life and false alarms. IEEE transactions on circuits and systems II: express briefs, 66(11):1910–1914.
Wang, Z. and Oates, T. (2015). Imaging time-series to improve classification and imputation. In Proceedings of the 24th International Conference on Artificial Intelligence, pages 3939–3945.
Publicado
25/06/2024
Como Citar
SUZUKI, Guilherme; FREITAS, Pedro Garcia.
On the Performance of Composite 1D-to-2D Projections for Signal Quality Assessment. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 24. , 2024, Goiânia/GO.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 319-330.
ISSN 2763-8952.
DOI: https://doi.org/10.5753/sbcas.2024.2207.