Classification of Alzheimer’s Disease by Magnetic Resonance Imaging with an Ensemble Approach
Resumo
Alzheimer’s Disease (AD), affecting over 55 million people globally, demands reliable diagnostic tools. Single-model approaches using CNNs and traditional ML face critical limitations. This study proposes two frameworks: a stacking-CNN ensemble (VGG-16, ResNet-101, DenseNet-121) and two voting ML ensembles (Voting[all]: KNN, RF, SVC, LR, XGBoost; Voting[few]: KNN, RF, XGBoost). Evaluated on 6,400 MRIs, Voting[few] achieved the highest classification metrics (97.8% accuracy; 0.984 MCC; 93.8% F1macro), outperforming individual CNNs, validated through Friedman-Nemenyi tests. Results suggest, in this context, that simpler ML models might better capture the inherent characteristics of MRI data for AD diagnosis.Referências
Abimannan, S., El-Alfy, E.-S. M., Chang, Y.-S., Hussain, S., Shukla, S., and Satheesh, D. (2023). Ensemble multifeatured deep learning models and applications: A survey. IEEE Access, 11:107194–107217.
Ahmed, G., Er, M. J., Fareed, M. M. S., Zikria, S., Mahmood, S., He, J., Asad, M., Jilani, S. F., and Aslam, M. (2022). Dad-net: Classification of alzheimer’s disease using adasyn oversampling technique and optimized neural network. Molecules, 27(20):7085.
Alzheimer’s & Dementia (2024). 2024 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 20(5):3708–3821.
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., and Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1):53.
Alzubi, O. A., Alzubi, J. A., Alweshah, M., Qiqieh, I., Al-Shami, S., and Ramachandran, M. (2020). An optimal pruning algorithm of classifier ensembles: Dynamic programming approach. Neural Computing and Applications, 32(20):16091–16107.
Bhardwaj, M. and Bhatnagar, V. (2015). Towards an optimally pruned classifier ensemble. International Journal of Machine Learning and Cybernetics, 6(5):699–718.
Bhatnagar, V., Bhardwaj, M., Sharma, S., and Haroon, S. (2014). Accuracy–diversity based pruning of classifier ensembles. Progress in Artificial Intelligence, 2(2-3):97–111.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123–140.
Chatterjee, S. and Byun, Y.-C. (2022). Voting Ensemble Approach for Enhancing Alzheimer’s Disease Classification. Sensors, 22(19):7661.
Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1–30.
Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, and Li Fei-Fei (2009). ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255, Miami, FL. IEEE.
Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. In Goos, G., Hartmanis, J., and Van Leeuwen, J., editors, Multiple Classifier Systems, volume 1857, pages 1–15. Springer Berlin Heidelberg, Berlin, Heidelberg.
Falah.G.Salieh (2023). Alzheimer MRI dataset.
Fan, C., Chen, M., Wang, X., Wang, J., and Huang, B. (2021). A review on data preprocessing techniques toward efficient and reliable knowledge discovery from building operational data. Frontiers in Energy Research, 9.
Freund, Y. and Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 55(1):119–139.
Ganaie, M., Hu, M., Malik, A., Tanveer, M., and Suganthan, P. (2022). Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence, 115:105151.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for Image Recognition.
Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2018). Densely Connected Convolutional Networks.
Kaplan, E., Baygin, M., Barua, P. D., Dogan, S., Tuncer, T., Altunisik, E., Palmer, E. E., and Acharya, U. R. (2023). ExHiF: Alzheimer’s disease detection using exemplar histogram-based features with CT and MR images. Medical Engineering & Physics, 115:103971.
Krichen, M. (2023). Convolutional neural networks: A survey. Computers, 12(8):151.
Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural networks.
Kumar, A., Sidhu, J., Lui, F., and Tsao, J. W. (2025). Alzheimer Disease. In StatPearls. StatPearls Publishing, Treasure Island (FL).
Lopes, C. E. F., Lisboa, E., Ribeiro, Y., and Queiroz, F. (2024). A patch-based microscopic image analysis for visceral leishmaniasis screening using a deep metric learning approach. In Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS), pages 166–177. SBC.
Mahmud, T., Aziz, M. T., Uddin, M. K., Barua, K., Rahman, T., Sharmen, N., Shamim Kaiser, M., Sazzad Hossain, Md., Hossain, M. S., and Andersson, K. (2025). Ensemble Learning Approaches for Alzheimer’s Disease Classification in Brain Imaging Data. In Mahmud, M., Kaiser, M. S., Bandyopadhyay, A., Ray, K., and Al Mamun, S., editors, Proceedings of Trends in Electronics and Health Informatics, volume 1034, pages 133–147. Springer Nature Singapore, Singapore.
Özaltın, Ö. (2025). Early Detection of Alzheimer’s Disease from MR Images Using Fine-Tuning Neighborhood Component Analysis and Convolutional Neural Networks. Arabian Journal for Science and Engineering.
Patel, H., Ganatra, A. P., Bhensdadia, C. K., and Kosta, Y. (2011). Experimental study and review of boosting algorithms. Artificial Intelligent Systems and Machine Learning, 3:31–41.
Planche, V., Manjon, J. V., Mansencal, B., Lanuza, E., Tourdias, T., Catheline, G., and Coupé, P. (2022). Structural progression of alzheimer’s disease over decades: the mri staging scheme. Brain Communications, 4(3).
Saleem, M. A., Senan, N., Wahid, F., Aamir, M., Samad, A., and Khan, M. (2022). Comparative Analysis of Recent Architecture of Convolutional Neural Network. Mathematical Problems in Engineering, 2022:1–9.
Salmi, M., Atif, D., Oliva, D., Abraham, A., and Ventura, S. (2024). Handling imbalanced medical datasets: review of a decade of research. Artificial Intelligence Review, 57(10).
Sharmin, S., Ahammad, T., Talukder, M. A., and Ghose, P. (2023). A Hybrid Dependable Deep Feature Extraction and Ensemble-Based Machine Learning Approach for Breast Cancer Detection. IEEE Access, 11:87694–87708.
Shastry, K. A. (2024). Deep Learning-Based Classification of Alzheimer’s Disease Using MRI Scans: A Customized Convolutional Neural Network Approach. SN Computer Science, 5(7):917.
Silva, L. F. D. J., Cortes, O. A. C., and Diniz, J. O. B. (2023). A novel ensemble CNN model for COVID-19 classification in computerized tomography scans. Results in Control and Optimization, 11:100215.
Simonyan, K. and Zisserman, A. (2015a). Very Deep Convolutional Networks for Large-Scale Image Recognition.
Simonyan, K. and Zisserman, A. (2015b). Very Deep Convolutional Networks for Large-Scale Image Recognition.
Wadghiri, M., Idri, A., El Idrissi, T., and Hakkoum, H. (2022). Ensemble blood glucose prediction in diabetes mellitus: A review. Computers in Biology and Medicine, 147:105674.
World Health Organization (2023). Dementia. [link].
Xie, Y. and Richmond, D. (2019). Pre-training on grayscale imagenet improves medical image classification. In Computer Vision – ECCV 2018 Workshops, page 476–484. Springer International Publishing.
Zhang, J., Li, Z., Lin, H., Xue, M., Wang, H., Fang, Y., Liu, S., Huo, T., Zhou, H., Yang, J., Xie, Y., Xie, M., Lu, L., Liu, P., and Ye, Z. (2023). Deep learning assisted diagnosis system: improving the diagnostic accuracy of distal radius fractures. Frontiers in Medicine, 10.
Ahmed, G., Er, M. J., Fareed, M. M. S., Zikria, S., Mahmood, S., He, J., Asad, M., Jilani, S. F., and Aslam, M. (2022). Dad-net: Classification of alzheimer’s disease using adasyn oversampling technique and optimized neural network. Molecules, 27(20):7085.
Alzheimer’s & Dementia (2024). 2024 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 20(5):3708–3821.
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., and Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1):53.
Alzubi, O. A., Alzubi, J. A., Alweshah, M., Qiqieh, I., Al-Shami, S., and Ramachandran, M. (2020). An optimal pruning algorithm of classifier ensembles: Dynamic programming approach. Neural Computing and Applications, 32(20):16091–16107.
Bhardwaj, M. and Bhatnagar, V. (2015). Towards an optimally pruned classifier ensemble. International Journal of Machine Learning and Cybernetics, 6(5):699–718.
Bhatnagar, V., Bhardwaj, M., Sharma, S., and Haroon, S. (2014). Accuracy–diversity based pruning of classifier ensembles. Progress in Artificial Intelligence, 2(2-3):97–111.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123–140.
Chatterjee, S. and Byun, Y.-C. (2022). Voting Ensemble Approach for Enhancing Alzheimer’s Disease Classification. Sensors, 22(19):7661.
Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1–30.
Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, and Li Fei-Fei (2009). ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255, Miami, FL. IEEE.
Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. In Goos, G., Hartmanis, J., and Van Leeuwen, J., editors, Multiple Classifier Systems, volume 1857, pages 1–15. Springer Berlin Heidelberg, Berlin, Heidelberg.
Falah.G.Salieh (2023). Alzheimer MRI dataset.
Fan, C., Chen, M., Wang, X., Wang, J., and Huang, B. (2021). A review on data preprocessing techniques toward efficient and reliable knowledge discovery from building operational data. Frontiers in Energy Research, 9.
Freund, Y. and Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 55(1):119–139.
Ganaie, M., Hu, M., Malik, A., Tanveer, M., and Suganthan, P. (2022). Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence, 115:105151.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for Image Recognition.
Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2018). Densely Connected Convolutional Networks.
Kaplan, E., Baygin, M., Barua, P. D., Dogan, S., Tuncer, T., Altunisik, E., Palmer, E. E., and Acharya, U. R. (2023). ExHiF: Alzheimer’s disease detection using exemplar histogram-based features with CT and MR images. Medical Engineering & Physics, 115:103971.
Krichen, M. (2023). Convolutional neural networks: A survey. Computers, 12(8):151.
Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural networks.
Kumar, A., Sidhu, J., Lui, F., and Tsao, J. W. (2025). Alzheimer Disease. In StatPearls. StatPearls Publishing, Treasure Island (FL).
Lopes, C. E. F., Lisboa, E., Ribeiro, Y., and Queiroz, F. (2024). A patch-based microscopic image analysis for visceral leishmaniasis screening using a deep metric learning approach. In Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS), pages 166–177. SBC.
Mahmud, T., Aziz, M. T., Uddin, M. K., Barua, K., Rahman, T., Sharmen, N., Shamim Kaiser, M., Sazzad Hossain, Md., Hossain, M. S., and Andersson, K. (2025). Ensemble Learning Approaches for Alzheimer’s Disease Classification in Brain Imaging Data. In Mahmud, M., Kaiser, M. S., Bandyopadhyay, A., Ray, K., and Al Mamun, S., editors, Proceedings of Trends in Electronics and Health Informatics, volume 1034, pages 133–147. Springer Nature Singapore, Singapore.
Özaltın, Ö. (2025). Early Detection of Alzheimer’s Disease from MR Images Using Fine-Tuning Neighborhood Component Analysis and Convolutional Neural Networks. Arabian Journal for Science and Engineering.
Patel, H., Ganatra, A. P., Bhensdadia, C. K., and Kosta, Y. (2011). Experimental study and review of boosting algorithms. Artificial Intelligent Systems and Machine Learning, 3:31–41.
Planche, V., Manjon, J. V., Mansencal, B., Lanuza, E., Tourdias, T., Catheline, G., and Coupé, P. (2022). Structural progression of alzheimer’s disease over decades: the mri staging scheme. Brain Communications, 4(3).
Saleem, M. A., Senan, N., Wahid, F., Aamir, M., Samad, A., and Khan, M. (2022). Comparative Analysis of Recent Architecture of Convolutional Neural Network. Mathematical Problems in Engineering, 2022:1–9.
Salmi, M., Atif, D., Oliva, D., Abraham, A., and Ventura, S. (2024). Handling imbalanced medical datasets: review of a decade of research. Artificial Intelligence Review, 57(10).
Sharmin, S., Ahammad, T., Talukder, M. A., and Ghose, P. (2023). A Hybrid Dependable Deep Feature Extraction and Ensemble-Based Machine Learning Approach for Breast Cancer Detection. IEEE Access, 11:87694–87708.
Shastry, K. A. (2024). Deep Learning-Based Classification of Alzheimer’s Disease Using MRI Scans: A Customized Convolutional Neural Network Approach. SN Computer Science, 5(7):917.
Silva, L. F. D. J., Cortes, O. A. C., and Diniz, J. O. B. (2023). A novel ensemble CNN model for COVID-19 classification in computerized tomography scans. Results in Control and Optimization, 11:100215.
Simonyan, K. and Zisserman, A. (2015a). Very Deep Convolutional Networks for Large-Scale Image Recognition.
Simonyan, K. and Zisserman, A. (2015b). Very Deep Convolutional Networks for Large-Scale Image Recognition.
Wadghiri, M., Idri, A., El Idrissi, T., and Hakkoum, H. (2022). Ensemble blood glucose prediction in diabetes mellitus: A review. Computers in Biology and Medicine, 147:105674.
World Health Organization (2023). Dementia. [link].
Xie, Y. and Richmond, D. (2019). Pre-training on grayscale imagenet improves medical image classification. In Computer Vision – ECCV 2018 Workshops, page 476–484. Springer International Publishing.
Zhang, J., Li, Z., Lin, H., Xue, M., Wang, H., Fang, Y., Liu, S., Huo, T., Zhou, H., Yang, J., Xie, Y., Xie, M., Lu, L., Liu, P., and Ye, Z. (2023). Deep learning assisted diagnosis system: improving the diagnostic accuracy of distal radius fractures. Frontiers in Medicine, 10.
Publicado
09/06/2025
Como Citar
SILVA, Gustavo S.; CORTES, Omar A. C.; JACOB JR., Antonio F. L..
Classification of Alzheimer’s Disease by Magnetic Resonance Imaging with an Ensemble Approach. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 25. , 2025, Porto Alegre/RS.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 32-43.
ISSN 2763-8952.
DOI: https://doi.org/10.5753/sbcas.2025.6919.