Classificação de Doença Arterial Coronariana através de redes neurais profundas
Resumo
As doenças arteriais coronarianas (DAC) figuram entre as principais causas de mortalidade no mundo, demandando avanços no diagnóstico precoce. Este estudo compara redes neurais LSTM, Bi-GRU e Transformer na classificação de eletrocardiogramas (ECG) em três categorias: normal, infarto inferior (IMI) e anterior (AMI), utilizando o conjunto de dados PTB-XL. Os resultados indicam que Transformers são mais rápidos no treinamento (média de 35 minutos), enquanto LSTM e Bi-GRU apresentam maior precisão (91% e 92%, respectivamente). O trabalho também contribui para a melhoria do préprocessamento e do treinamento de dados de ECG aplicados ao diagnóstico cardíaco.Referências
M. A. Atiea e M. Adel. Transformer-based neural network for electrocardiogram classification. International Journal of Advanced Computer Science and Applications, 13 (11), 2022.
F. S. Butt, M. F. Wagner, J. Schäfer, e D. G. Ullate. Toward automated feature extraction for deep learning classification of electrocardiogram signals. IEEE Access, 10:118601–118616, 2022.
E. F. Carneiro. O eletrocardiograma: 10 anos depois. In O Eletrocardiograma: 10 anos depois, pages 622–622. 1997.
J. Chung. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.
A. Darmawahyuni, S. Nurmaini, e Sukemi. Deep learning with long short-term memory for enhancement myocardial infarction classification. In 2019 6th International Conference on Instrumentation, Control, and Automation (ICA), pages 19–23, 2019. DOI: 10.1109/ICA.2019.8916683.
M. Dey, N. Omar, e M. A. Ullah. Temporal feature-based classification into myocardial infarction and other cvds merging cnn and bi-lstm from ecg signal. IEEE Sensors Journal, 21(19):21688–21695, 2021. DOI: 10.1109/JSEN.2021.3079241.
Q. Geng, H. Liu, T. Gao, R. Liu, C. Chen, Q. Zhu, e M. Shu. An ecg classification method based on multi-task learning and cot attention mechanism. Healthcare, 11(7), 2023. ISSN 2227-9032. DOI: 10.3390/healthcare11071000. URL [link].
S. Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997. E. B. Komilovich. Coronary artery disease. EUROPEAN JOURNAL OF MODERN MEDICINE AND PRACTICE, 3(12):81–87, 2023.
A. Natarajan, Y. Chang, S. Mariani, A. Rahman, G. Boverman, S. Vij, e J. Rubin. A wide and deep transformer neural network for 12-lead ecg classification. In 2020 Computing in Cardiology, pages 1–4. IEEE, 2020.
J. Pan e W. J. Tompkins. A real-time qrs detection algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3):230–236, 1985. DOI: 10.1109/TBME.1985.325532.
N. Strodthoff, T. Mehari, C. Nagel, P. J. Aston, A. Sundar, C. Graff, J. K. Kanters, W. Haverkamp, O. Dössel, A. Loewe, et al. Ptb-xl+, a comprehensive electrocardiographic feature dataset. Scientific data, 10(1):279, 2023.
A. Vaswani. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017. P. Wagner, N. Strodthoff, R.-D. Bousseljot, D. Kreiseler, F. I. Lunze, W. Samek, e T. Schaeffter. Ptb-xl, a large publicly available electrocardiography dataset. Scientific data, 7 (1):1–15, 2020.
P. Xiong, S. M.-Y. Lee, e G. Chan. Deep learning for detecting and locating myocardial infarction by electrocardiogram: A literature review. Frontiers in cardiovascular medicine, 9:860032, 2022.
X. Zhang, R. Li, H. Dai, Y. Liu, B. Zhou, e Z. Wang. Localization of myocardial infarction with multi-lead bidirectional gated recurrent unit neural network. IEEE Access, 7: 161152–161166, 2019a. DOI: 10.1109/ACCESS.2019.2946932.
X. Zhang, R. Li, Q. Hu, B. Zhou, e Z. Wang. A new automatic approach to distinguish myocardial infarction based on lstm. In 2019 8th International Symposium on Next Generation Electronics (ISNE), pages 1–3, 2019b. DOI: 10.1109/ISNE.2019.8896550.
F. S. Butt, M. F. Wagner, J. Schäfer, e D. G. Ullate. Toward automated feature extraction for deep learning classification of electrocardiogram signals. IEEE Access, 10:118601–118616, 2022.
E. F. Carneiro. O eletrocardiograma: 10 anos depois. In O Eletrocardiograma: 10 anos depois, pages 622–622. 1997.
J. Chung. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.
A. Darmawahyuni, S. Nurmaini, e Sukemi. Deep learning with long short-term memory for enhancement myocardial infarction classification. In 2019 6th International Conference on Instrumentation, Control, and Automation (ICA), pages 19–23, 2019. DOI: 10.1109/ICA.2019.8916683.
M. Dey, N. Omar, e M. A. Ullah. Temporal feature-based classification into myocardial infarction and other cvds merging cnn and bi-lstm from ecg signal. IEEE Sensors Journal, 21(19):21688–21695, 2021. DOI: 10.1109/JSEN.2021.3079241.
Q. Geng, H. Liu, T. Gao, R. Liu, C. Chen, Q. Zhu, e M. Shu. An ecg classification method based on multi-task learning and cot attention mechanism. Healthcare, 11(7), 2023. ISSN 2227-9032. DOI: 10.3390/healthcare11071000. URL [link].
S. Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997. E. B. Komilovich. Coronary artery disease. EUROPEAN JOURNAL OF MODERN MEDICINE AND PRACTICE, 3(12):81–87, 2023.
A. Natarajan, Y. Chang, S. Mariani, A. Rahman, G. Boverman, S. Vij, e J. Rubin. A wide and deep transformer neural network for 12-lead ecg classification. In 2020 Computing in Cardiology, pages 1–4. IEEE, 2020.
J. Pan e W. J. Tompkins. A real-time qrs detection algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3):230–236, 1985. DOI: 10.1109/TBME.1985.325532.
N. Strodthoff, T. Mehari, C. Nagel, P. J. Aston, A. Sundar, C. Graff, J. K. Kanters, W. Haverkamp, O. Dössel, A. Loewe, et al. Ptb-xl+, a comprehensive electrocardiographic feature dataset. Scientific data, 10(1):279, 2023.
A. Vaswani. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017. P. Wagner, N. Strodthoff, R.-D. Bousseljot, D. Kreiseler, F. I. Lunze, W. Samek, e T. Schaeffter. Ptb-xl, a large publicly available electrocardiography dataset. Scientific data, 7 (1):1–15, 2020.
P. Xiong, S. M.-Y. Lee, e G. Chan. Deep learning for detecting and locating myocardial infarction by electrocardiogram: A literature review. Frontiers in cardiovascular medicine, 9:860032, 2022.
X. Zhang, R. Li, H. Dai, Y. Liu, B. Zhou, e Z. Wang. Localization of myocardial infarction with multi-lead bidirectional gated recurrent unit neural network. IEEE Access, 7: 161152–161166, 2019a. DOI: 10.1109/ACCESS.2019.2946932.
X. Zhang, R. Li, Q. Hu, B. Zhou, e Z. Wang. A new automatic approach to distinguish myocardial infarction based on lstm. In 2019 8th International Symposium on Next Generation Electronics (ISNE), pages 1–3, 2019b. DOI: 10.1109/ISNE.2019.8896550.
Publicado
09/06/2025
Como Citar
FERREIRA, Diogo Casal; MACHADO, Alexei Manso Correa.
Classificação de Doença Arterial Coronariana através de redes neurais profundas. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 25. , 2025, Porto Alegre/RS.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 116-127.
ISSN 2763-8952.
DOI: https://doi.org/10.5753/sbcas.2025.6951.
