Coronary Artery Disease Classification Using Deep Neural Networks
Abstract
Coronary artery disease (CAD) is one of the leading causes of global mortality, highlighting the need for more effective early diagnosis methods. This study compares LSTM, Bi-GRU, and Transformer neural networks in classifying electrocardiograms (ECG) into three categories: normal, inferior myocardial infarction (IMI), and anterior myocardial infarction (AMI), using the PTB-XL dataset. Results show that Transformers offer faster training (average of 35 minutes), while LSTM and Bi-GRU achieve higher accuracy (91% and 92%, respectively). The study also contributes to improving ECG data preprocessing and training for cardiac diagnosis classification.References
M. A. Atiea e M. Adel. Transformer-based neural network for electrocardiogram classification. International Journal of Advanced Computer Science and Applications, 13 (11), 2022.
F. S. Butt, M. F. Wagner, J. Schäfer, e D. G. Ullate. Toward automated feature extraction for deep learning classification of electrocardiogram signals. IEEE Access, 10:118601–118616, 2022.
E. F. Carneiro. O eletrocardiograma: 10 anos depois. In O Eletrocardiograma: 10 anos depois, pages 622–622. 1997.
J. Chung. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.
A. Darmawahyuni, S. Nurmaini, e Sukemi. Deep learning with long short-term memory for enhancement myocardial infarction classification. In 2019 6th International Conference on Instrumentation, Control, and Automation (ICA), pages 19–23, 2019. DOI: 10.1109/ICA.2019.8916683.
M. Dey, N. Omar, e M. A. Ullah. Temporal feature-based classification into myocardial infarction and other cvds merging cnn and bi-lstm from ecg signal. IEEE Sensors Journal, 21(19):21688–21695, 2021. DOI: 10.1109/JSEN.2021.3079241.
Q. Geng, H. Liu, T. Gao, R. Liu, C. Chen, Q. Zhu, e M. Shu. An ecg classification method based on multi-task learning and cot attention mechanism. Healthcare, 11(7), 2023. ISSN 2227-9032. DOI: 10.3390/healthcare11071000. URL [link].
S. Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997. E. B. Komilovich. Coronary artery disease. EUROPEAN JOURNAL OF MODERN MEDICINE AND PRACTICE, 3(12):81–87, 2023.
A. Natarajan, Y. Chang, S. Mariani, A. Rahman, G. Boverman, S. Vij, e J. Rubin. A wide and deep transformer neural network for 12-lead ecg classification. In 2020 Computing in Cardiology, pages 1–4. IEEE, 2020.
J. Pan e W. J. Tompkins. A real-time qrs detection algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3):230–236, 1985. DOI: 10.1109/TBME.1985.325532.
N. Strodthoff, T. Mehari, C. Nagel, P. J. Aston, A. Sundar, C. Graff, J. K. Kanters, W. Haverkamp, O. Dössel, A. Loewe, et al. Ptb-xl+, a comprehensive electrocardiographic feature dataset. Scientific data, 10(1):279, 2023.
A. Vaswani. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017. P. Wagner, N. Strodthoff, R.-D. Bousseljot, D. Kreiseler, F. I. Lunze, W. Samek, e T. Schaeffter. Ptb-xl, a large publicly available electrocardiography dataset. Scientific data, 7 (1):1–15, 2020.
P. Xiong, S. M.-Y. Lee, e G. Chan. Deep learning for detecting and locating myocardial infarction by electrocardiogram: A literature review. Frontiers in cardiovascular medicine, 9:860032, 2022.
X. Zhang, R. Li, H. Dai, Y. Liu, B. Zhou, e Z. Wang. Localization of myocardial infarction with multi-lead bidirectional gated recurrent unit neural network. IEEE Access, 7: 161152–161166, 2019a. DOI: 10.1109/ACCESS.2019.2946932.
X. Zhang, R. Li, Q. Hu, B. Zhou, e Z. Wang. A new automatic approach to distinguish myocardial infarction based on lstm. In 2019 8th International Symposium on Next Generation Electronics (ISNE), pages 1–3, 2019b. DOI: 10.1109/ISNE.2019.8896550.
F. S. Butt, M. F. Wagner, J. Schäfer, e D. G. Ullate. Toward automated feature extraction for deep learning classification of electrocardiogram signals. IEEE Access, 10:118601–118616, 2022.
E. F. Carneiro. O eletrocardiograma: 10 anos depois. In O Eletrocardiograma: 10 anos depois, pages 622–622. 1997.
J. Chung. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.
A. Darmawahyuni, S. Nurmaini, e Sukemi. Deep learning with long short-term memory for enhancement myocardial infarction classification. In 2019 6th International Conference on Instrumentation, Control, and Automation (ICA), pages 19–23, 2019. DOI: 10.1109/ICA.2019.8916683.
M. Dey, N. Omar, e M. A. Ullah. Temporal feature-based classification into myocardial infarction and other cvds merging cnn and bi-lstm from ecg signal. IEEE Sensors Journal, 21(19):21688–21695, 2021. DOI: 10.1109/JSEN.2021.3079241.
Q. Geng, H. Liu, T. Gao, R. Liu, C. Chen, Q. Zhu, e M. Shu. An ecg classification method based on multi-task learning and cot attention mechanism. Healthcare, 11(7), 2023. ISSN 2227-9032. DOI: 10.3390/healthcare11071000. URL [link].
S. Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997. E. B. Komilovich. Coronary artery disease. EUROPEAN JOURNAL OF MODERN MEDICINE AND PRACTICE, 3(12):81–87, 2023.
A. Natarajan, Y. Chang, S. Mariani, A. Rahman, G. Boverman, S. Vij, e J. Rubin. A wide and deep transformer neural network for 12-lead ecg classification. In 2020 Computing in Cardiology, pages 1–4. IEEE, 2020.
J. Pan e W. J. Tompkins. A real-time qrs detection algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3):230–236, 1985. DOI: 10.1109/TBME.1985.325532.
N. Strodthoff, T. Mehari, C. Nagel, P. J. Aston, A. Sundar, C. Graff, J. K. Kanters, W. Haverkamp, O. Dössel, A. Loewe, et al. Ptb-xl+, a comprehensive electrocardiographic feature dataset. Scientific data, 10(1):279, 2023.
A. Vaswani. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017. P. Wagner, N. Strodthoff, R.-D. Bousseljot, D. Kreiseler, F. I. Lunze, W. Samek, e T. Schaeffter. Ptb-xl, a large publicly available electrocardiography dataset. Scientific data, 7 (1):1–15, 2020.
P. Xiong, S. M.-Y. Lee, e G. Chan. Deep learning for detecting and locating myocardial infarction by electrocardiogram: A literature review. Frontiers in cardiovascular medicine, 9:860032, 2022.
X. Zhang, R. Li, H. Dai, Y. Liu, B. Zhou, e Z. Wang. Localization of myocardial infarction with multi-lead bidirectional gated recurrent unit neural network. IEEE Access, 7: 161152–161166, 2019a. DOI: 10.1109/ACCESS.2019.2946932.
X. Zhang, R. Li, Q. Hu, B. Zhou, e Z. Wang. A new automatic approach to distinguish myocardial infarction based on lstm. In 2019 8th International Symposium on Next Generation Electronics (ISNE), pages 1–3, 2019b. DOI: 10.1109/ISNE.2019.8896550.
Published
2025-06-09
How to Cite
FERREIRA, Diogo Casal; MACHADO, Alexei Manso Correa.
Coronary Artery Disease Classification Using Deep Neural Networks. In: BRAZILIAN SYMPOSIUM ON COMPUTING APPLIED TO HEALTH (SBCAS), 25. , 2025, Porto Alegre/RS.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 116-127.
ISSN 2763-8952.
DOI: https://doi.org/10.5753/sbcas.2025.6951.
