Brain Signal Analysis for Attention Level Detection in Digital Games

  • Carla Estefany Caetano Silva UFF
  • Daniela Gorski Trevisan UFF
  • Débora Christina Muchaluat Saade UFF

Abstract


This study proposes the use of brain signals for detection and analysis of focus of attention in 4 games using mouse and touchpad. The approach used uses the Bitalino device to capture brain waves and Wavelet decompositions and spectrogram analysis to detect different levels of attention. Results identified a mean baseline reference of 55% and indicated that games without a time limit helped to increase the attention of the participants over time, while others had difficulty maintaining focus, regardless of the device used. The findings highlight the possibility of designing interactive technologies that foster greater engagement and consider the natural dynamics of human attention.

References

Amaral, C. P., Simões, M. A., Mouga, S., Andrade, J., and Castelo-Branco, M. (2017). A novel brain computer interface for classification of social joint attention in autism and comparison of 3 experimental setups: a feasibility study. Journal of neuroscience methods, 290:105–115.

Batista, D., Plácido da Silva, H., Fred, A., Moreira, C., Reis, M., and Ferreira, H. A. (2019). Benchmarking of the bitalino biomedical toolkit against an established gold standard. Healthcare Technology Letters, 6(2):32–36.

Comon, P. (1994). Independent component analysis, a new concept? Signal Processing, 36(3):287–314.

Feijão, A. R. and Galvão, M. T. G. (2007). Ações de educação em saúde na atenção primária: revelando métodos, técnicas e bases teóricas. Revista da Rede de Enfermagem do Nordeste, 8(2):41–49.

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., and Stanley, H. E. (2000). Physiobank, physiotoolkit e physionet: Componentes de um novo recurso de pesquisa para sinais fisiológicos complexos. Circulação [Online], 101(23):e215–e220.

Gonzalez, R. and Woods, R. (2009). Processamento Digital De Imagens. ADDISON WESLEY BRA.

Hassan, R., Hasan, M. S., Hasan, J., Jamader, M. R., Eisenberg, D., and Pias, T. (2020). Machine learning based human attention recognition from brain-eeg signals.

Imah, E. M., Dewi, E. S., and Buditjahjanto, I. G. P. A. (2021). A comparative analysis of machine learning methods for joint attention classification in autism spectrum disorder using electroencephalography brain computer interface. International Journal of Intelligent Engineering Systems, 14(3).

Kaji, Y., Yamamoto, Y., Kawata, J., Morimoto, J., and Fujisawa, S. (2020). Eeg variations during measurement of cognitive functions using biosignal acquisition toolkit. Journal of Robotics and Mechatronics, 32(4):753–760.

Klem, G. H. (1999). The ten-twenty electrode system of the international federation. the international federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl., 52:3–6.

MacLeod, C. M. (1991). Half a century of research on the stroop effect: An integrative review. Psychological Bulletin, 109(2):163–203.

Mallat, S. (2008). A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, 3rd edition.

PLUX Wireless Biosignals, S. (2021). BITalino (r)evolution User Manual. Available at [link].

Python Core Team (2019). Python: A dynamic, open source programming language. Python Software Foundation. Python version 3.8.

Ramos, R., Valdez-Salas, B., Zlatev, R., Wiener, M. S., and Rull, J. M. B. (2017). The discrete wavelet transform and its application for noise removal in localized corrosion measurements. International Journal of Corrosion, 2017.

Reitan, R. M. (1958). Validity of the Trail Making Test as an indicator of organic brain damage, volume 8. Perceptual and Motor Skills.

Smith, A. (1982). Symbol Digit Modalities Test: Manual. Western Psychological Services.

Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6):643–662.

Torrence, C. and Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1):61–78.

Zyma, I., Tukaev, S., Seleznov, I., Kiyono, K., Popov, A., Chernykh, M., and Shpenkov, O. (2019). Electroencephalograms during mental arithmetic task performance. Data, 4(1).
Published
2025-06-09
SILVA, Carla Estefany Caetano; TREVISAN, Daniela Gorski; SAADE, Débora Christina Muchaluat. Brain Signal Analysis for Attention Level Detection in Digital Games. In: BRAZILIAN SYMPOSIUM ON COMPUTING APPLIED TO HEALTH (SBCAS), 25. , 2025, Porto Alegre/RS. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 557-568. ISSN 2763-8952. DOI: https://doi.org/10.5753/sbcas.2025.7576.