Redes Neurais Convolucionais para Avaliação de Dor Neonatal em Imagens de Face: Uma Análise Quantitativa e Qualitativa

  • Gabriel de Almeida Sá Coutrin FEI
  • Carlos Eduardo Thomaz FEI

Abstract


Pain experience may harm the development of newborns. The analysis of facial expressions is one of the most validated methods for neonatal pain assessment. Thus, this work investigates five CNNs for the classification of neonatal pain: VGG-16, ResNet50, SENet50, Inception-V3 and N-CNN. Our results indicate the superiority of models originally trained with face images, highlighting most relevant differences owing to the explainable information extracted by each model and to the current issue of limited neonatal face images available.

References

Brahnam, S., Chuang, C.-F., Shih, F. Y., and Slack, M. R. (2006). Machine recognition and representation of neonatal facial displays of acute pain. Artificial intelligence in medicine, 36(3):211–222.

Carlini, L. P., Ferreira, L. A., Coutrin, G. A. S., Varoto, V. V., Heiderich, T. M., Balda, R. C. X., Barros, M. C. M., Guinsburg, R., and Thomaz, C. E. (2021). A convolutional neural network-based mobile application to bedside neonatal pain assessment. In 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pages 394–401.

Gkikas, S. and Tsiknakis, M. (2023). Automatic assessment of pain based on deep learning methods: A systematic review. Computer Methods and Programs in Biomedicine, 231:107365.

Guinsburg, R. (1999). Avaliação e tratamento da dor no recém-nascido. J Pediatr (Rio J), 75(3):149–60.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Heiderich, T. M., Leslie, A. T. F. S., and Guinsburg, R. (2015). Neonatal procedural pain can be assessed by computer software that has good sensitivity and specificity to detect facial movements. Acta Paediatrica, 104(2):e63–e69.

Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7132–7141.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision, pages 618–626.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818–2826.

Tamanaka, F. G., Carlini, L. P., Heiderich, T. M., Balda, R. C. X., Barros, M. C. M., Guinsburg, R., and Thomaz, C. E. (2022). Neonatal pain assessment: A kendall analysis between clinical and visually perceived facial features. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 0(0):1–10.

Zamzmi, G., Paul, R., Goldgof, D., Kasturi, R., and Sun, Y. (2019). Pain assessment from facial expression: Neonatal convolutional neural network (n-cnn). In 2019 International Joint Conference on Neural Networks (IJCNN), pages 1–7. IEEE.
Published
2023-06-27
COUTRIN, Gabriel de Almeida Sá; THOMAZ, Carlos Eduardo. Redes Neurais Convolucionais para Avaliação de Dor Neonatal em Imagens de Face: Uma Análise Quantitativa e Qualitativa. In: ARTUR ZIVIANI AWARD - THESES AND DISSERTATIONS CONTEST (MASTER'S) - BRAZILIAN SYMPOSIUM ON COMPUTING APPLIED TO HEALTHCARE (SBCAS), 23. , 2023, São Paulo/SP. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 90-95. ISSN 2763-8987. DOI: https://doi.org/10.5753/sbcas_estendido.2023.229368.