Concatenative Sound Synthesis as a Technomorphic Model in Computer-Aided Composition

  • Júlio Guatimosim Universidade Federal de Minas Gerais
  • José Henrique Padovani Universidade Federal de Minas Gerais
  • Carlos Guatimosim Universidade Federal de Minas Gerais


The text presents a process aimed at computer-aided composition for percussion instruments based on Concatenative Sound Synthesis (CSS). After the introduction, we address the concept of ”technomorphism” and the influence of electroacoustic techniques in instrumental composition. The third section covers processes of instrumental sound synthesis and its development in the context of Computer-Aided Composition (CAC) and Computer-Aided Music Orchestration (CAMO). Then, we describe the general principles of Concatenative Sound Synthesis (CSS). The fifth section covers our adaptation of CSS as a technomorphic model for Computer-Aided Composition/Orchestration, employing a corpus of percussion sounds/instruments. In the final section, we discuss future developments and the mains characteristics of our implementation and strategy.

Palavras-chave: Computer Music and Creative processes, Digital Sound Processing, Music Information Retrieval


Tatiana Catanzaro. Transformações na linguagem musical contemporânea instrumental e vocal sob a influência da música eletroacústica entre as décadas de 1950-70. 7 Letras, Rio de Janeiro, RJ, 2018.

Bryan Holmes. Tecnomorfismo em música: uma visão teórica e prática. PhD thesis, Unirio, Rio de Janeiro, 2019.

Peter Niklas Wilson. Vers une ’écologie des sons’: Partiels de Gérard Grisey et l’esthétique du groupe de l’Itinéraire. Entretemps, 8:56–81, 1989.

Gilbert Simondon. On the mode of existence of technical objects. Univocal Pub, Minneapolis, MN, 2017.

Gérard Grisey. À propos de la synthèse instrumentale. In Guy Lelong, editor, Écrits ou L’invention de la musique spectrale. MF, Paris, 2008.

Gérard Grisey. Structuration des timbres dans la musique instrumentale. In Guy Lelong, editor, Écrits ou L’invention de la musique spectrale, pages 89–120. MF, Paris, 2008.

C. Barlow. On the spectral analysis of speech for subsequent resynthesis by acoustic instruments. undefined, 1998.

Clarence Barlow. Music Derived from Other Sources. Journal of Science and Technology of the Arts, 13(1):21–44, April 2021. Number: 1.

Otto Laske. Composition Theory in Koenig’s Project One and Project Two. Computer Music Journal, 5(4):54–65, 1981. Publisher: The MIT Press.

David Psenicka. SPORCH: An Algorithm for Orchestration Based on Spectral Analyses of Recorded Sounds. In Proceedings of the 29th International Computer Music Conference, pages 1–4, Singapore, 2003. Michigan Publishing.

Grégoire Carpentier, Damien Tardieu, Gérard Assayag, Xavier Rodet, and Emmanuel Saint-James. Imitative and Generative Orchestrations Using Preanalyzed Sound Databases. In Proceedings of the Sound and Music Computing Conference, pages 1– 8, Marseille, 2006.

Grégoire Carpentier and Jean Bresson. Interacting with Symbol, Sound, and Feature Spaces in Orchidée, a Computer-Aided Orchestration Environment. Computer Music Journal, 34(1):10–27, March 2010.

José Abreu, Marcelo Caetano, and Rui Penha. Computer-Aided Musical Orchestration Using an Artificial Immune System. In Proceedings of the 5th International Conference on Evolutionary and Biologically Inspired Music, Sound, Art and Design - Volume 9596, pages 1–16, Berlin, Heidelberg, March 2016. Springer-Verlag.

Jon Gillick, Carmine-Emanuele Cella, and David Bamman. Estimating Unobserved Audio Features for Target-Based Orchestration. In ISMIR, 2019.

Carmine Emanuele Cella, Daniele Ghisi, Vincent Lostanlen, Fabien Lévy, Joshua Fineberg, and Yan Maresz. OrchideaSOL: a dataset of extended instrumental techniques for computer-aided orchestration. arXiv:2007.00763 [cs, eess], July 2020. arXiv: 2007.00763.

Marcelo Caetano and Carmine E. Cella. Imitative Computer-Aided Musical Orchestration with Biologically Inspired Algorithms. In Eduardo Reck Miranda, editor, Handbook of Artificial Intelligence for Music: Foundations, Advanced Approaches, and Developments for Creativity, pages 585–615. Springer International Publishing, Cham, 2021.

Ivan Eiji Yamauchi Simurra. Contribuição ao problema da orquestração assistida por computador com suporte de descritores de áudio. Doctor of Music Thesis, Universidade Estadual de Campinas, Campinas, 2016.

Helmut Lachenmann. Klangtypen der Neuen Musik. In Musik als existentielle Erfahrung: Schriften 19661995, pages 1–20. Breitkopf & Härtel, Wiesbaden, 1996.

Bob L. Sturm. Adaptive Concatenative Sound Synthesis and Its Application to Micromontage Composition. Computer Music Journal, 30(4):46–66, December 2006.

Gilberto Bernardes de Almeida. Composing Music by Selection: Content-Based Algorithmic-Assisted Audio Composition. Doctor of Philosophy, University of Porto, Porto, 2014.

Aymeric Zils and François Pachet. Musical Mosaicing. Proceedings of the COST G-6 Conference on Digital Audio Effects, pages 1–6, 2001.

Diemo Schwarz and Axel Roebel. Concatenative sound texture synthesis methods and evaluation. In Proceedings of the 19th International Conference on Digital Audio Effects (DAFx-16), Brno, Czech Republic, 2016.

William Brent. A timbre analysis and classification toolkit for pure data. Ann Arbor, MI: MPublishing, University of Michigan Library, 2010.

Diemo Schwarz, Gregory Beller, Bruno Verbrugghe, and Sam Britton. Real-Time Corpus-Based Concatenative Synthesis With CATART. In Proceedings of the 9th Int. Conference on Digital Audio Effects, pages 1–7, Montreal, Canada, 2006.

Derry Fitzgerald. Harmonic/Percussive Separation Using Median Filtering. In Proceedings of the 13th International Conference on Digital Audio Effects, pages 1–4, Graz, Austria, 2010.

Jonathan Driedger, Meinard Müller, and Sascha Disch. Extending Harmonic-Percussive Separation of Audio Signals. In Proceedings of the 15th International Conference on Music Information Retrieval (ISMIR), pages 611–616, Taipei, Taiwan, 2014.

Juan Pablo Bello, Laurent Daudet, Samer Abdallah, Chris Duxbury, Mike Davies, and Mark B Sandler. A Tutorial on Onset Detection in Music Signals. IEEE Transactions on Speech and Audio Processing, 13(5):1035–1047, 2005.

Trevor Baca, Josiah Wolf Oberholtzer, J. Trevino, and V. Adán. Abjad: An open-source software system for formalized score control. In Proceedings of The First International Conference on Technologies for Music Notation and Representation, 2015.

Gregory Evans. An Introduction to Modeling Composition Through Abjad’s Model of Music Notation. Master’s thesis, University of Miami, Miami, 2019.

Han-Wen Nienhuys and Jan Nieuwenhuizen. LilyPond, a System for Automated Music Engraving. In Proceedings of the XIV Colloquium on Musical Informatics (XIV CIM 2003), volume 1, pages 167–171, Florence, 2003. Citeseer.
GUATIMOSIM, Júlio; PADOVANI, José Henrique; GUATIMOSIM, Carlos. Concatenative Sound Synthesis as a Technomorphic Model in Computer-Aided Composition. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO MUSICAL (SBCM), 18. , 2021, Recife. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 88-94. DOI: