Organização de uma rede machine to machine (M2M) para controle distribuído de um robô humanoide
Resumo
Um problema enfrentado no desenvolvimento de robôs móveis consiste na quantidade de sensores e atuadores que utilizam uma grande massa de condutores que pode ser reduzida através de redes de comunicação com ou sem fio. Assim, propõe-se a organização da estrutura de tópicos do protocolo de comunicação MQTT juntamente com o projeto de hardware e software para o controle da cinemática de um robô humanoide. Avaliou-se ainda os tempos de respostas do microcontrolador ESP8266 responsável pela implementação dos protocolos de rede em diferentes intervalos entre mensagens em um sistema operacional de tempo real (FreeRTOS).
Referências
G. Langevin. (2018, Jul.) InMoov Project Page. [Online]. Available: http://www.inmoov.fr/project/
X. Li, H. Cheng, G. Ji, and J. Chen, “Learning complex assembly skills from kinect based human robot interaction,” in 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, dec 2017. [Online]. Available: https://doi.org/10.1109/robio.2017.8324818
M. Campos-Trinidad, J. A.-D. Carpio, E. Lopez-Zapata, and R. Salazar-Arevalo, “Optimal control of a robotic system and software development for speech-to-sign language transliterating applications,” in 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON). IEEE, aug 2017. [Online]. Available: https://doi.org/10.1109/intercon.2017.8079690
F. Acuna, M. Singana, F. Onate, V. Valdes, and M. Bustillos, “Humanoid interpreter for teaching basic sign language,” in 2016 IEEE International Conference on Automatica (ICA-ACCA). IEEE, oct 2016. [Online]. Available: https://doi.org/10.1109/ica-acca.2016.7778503
J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems architecture for industry 4.0-based manufacturing systems,” Manufacturing Letters, vol. 3, pp. 18 – 23, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S221384631400025X
S. Li, L. D. Xu, and S. Zhao, “The internet of things: a survey,” Information Systems Frontiers, vol. 17, no. 2, pp. 243–259, Apr 2015. [Online]. Available: https://doi.org/10.1007/s10796-014-9492-7
J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System architecture directions for networked sensors,” SIGOPS Oper. Syst. Rev., vol. 34, no. 5, pp. 93–104, Nov. 2000. [Online]. Available: http://doi.acm.org/10.1145/384264.379006
C. P. Team. (2018, Jul.) Contiki: The Open Source OS for the Internet of Things. [Online]. Available: http://www.contiki-os.org
F. P. team. (2018, Jul.) The FreeRTOS Kernel: Market Leading, Defacto Standard and Cross Platform RTOS kernel. [Online]. Available: http://www.freertos.org/
E. Systems. (2018, Jul.) ESP8266: Low-power, highly-integrated Wi-Fi solution. [Online]. Available: https://espressif.com/en/products/hardware/esp8266ex/overview
(2018, Jul.) MQTT Standard and Project Page. [Online]. Available: http//mqtt.org/
P. P. team. (2018, Jul.) Eclipse Paho: An open-source client implementations of MQTT. [Online]. Available: http://www.freertos.org/
S. Automation. (2018, Jul.) A community developed open source FreeRTOS-based framework for ESP8266. [Online]. Available: https://github.com/SuperHouse/esp-open-rtos
E. Corporation. (2018, Jul.) Espressif ESP8266 non OS SDK. [Online]. Available: https://github.com/esp8266/Arduino