Uma Revisão Sistemática da Literatura Sobre Tolerância a Falhas em Internet das Coisas

  • André Pastório UTFPR
  • Luiz Rodrigues UNIOESTE
  • Edson de Camargo UNIOESTE

Resumo


A ampla adoção do conceito de Internet das Coisas (IoT) passa por aumentar a confiabilidade e a disponibilidade das suas aplicações perante falhas. A heterogeneidade dos componentes IoT, aliado a dispositivos limitados computacionalmente e integrados a Internet, impõe desafios adicionais para alcançar a tolerância a falhas. Nesse contexto, é essencial investigar como a tolerância a falhas pode ser eficientemente desenvolvida em IoT. Este trabalho apresenta uma revisão sistemática da literatura sobre as principais técnicas e soluções de tolerância a falhas desenvolvidas nesse contexto. Dos 2.004 trabalhos encontrados nos últimos 5 anos, 44 respondem diretamente a questão de pesquisa formulada e são categorizados de acordo com a estratégia de tolerância a falhas utilizada. A análise dos resultados apresenta soluções aplicadas ao dispositivo, conectividade, nuvem e borda, arquiteturas tolerantes a falhas e blockchain.

Palavras-chave: Tolerancia a Falhas, Internet das Coisas, IoT, ˆ Revisao Sistem ˜ atica, RSL

Referências

Bain, "Unlocking opportunities in the internet of things", Online, 2018, acesso em 23/06/2019. [Online]. Available: https://www.bain.com/insights/unlocking-opportunities-in-the-internet-of-things/

Statista, "Forecast end-user spending on iot solutions worldwide from 2017 to 2025", 2020, acesso em 30/03/2020. [Online]. Available:https://www.statista.com/statistics/976313/global-iot-market-size/

vXchnge, "Comprehensive guide to iot statistics you need toknow in 2020", 2020, acesso em 30/03/2020. [Online]. Available:https://www.vxchnge.com/blog/iot-statistics

M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, "Long-range communications in unlicensed bands: the rising stars in the iot and smartcity scenarios, "IEEE Wirel. Comm., vol. 23, no. 5, pp. 60-67, Oct. 2016.

A. Tzounis, N. Katsoulas, T. Bartzanas, and C. Kittas, "Internet ofthings in agriculture, recent advances and future challenges,"BiosystemsEngineering, vol. 164, pp. 31 - 48, 2017.

S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K. Kwak, "The internet of things for health care: A comprehensive survey", IEEEAccess, vol. 3, pp. 678-708, 2015.

A. Whitmore, A. Agarwal, and L. Xu, "The internet of things-a survey of topics and trends", Information Systems Frontiers, vol. 17, no. 2, p.261-274, Apr. 2015.

A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, "Internet of things: A survey on enabling technologies, protocols, and applications", IEEE Communications Surveys Tutorials, vol. 17, no. 4, pp. 2347-2376, 2015.

M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, "Middleware for internet of things: A survey", IEEE Internet of Things Journal, vol. 3, no. 1, pp. 70-95, 2016.

D. Macedo, L. A. Guedes, and I. M. D. Silva, "A dependability evaluation for internet of things incorporating redundancy aspects", Proc. 11th IEEE Int’l Conf. Net., Sensing and Control, pp. 417-422, 2014.

A. Avizienis, J. . Laprie, B. Randell, and C. Landwehr, "Basic conceptsand taxonomy of dependable and secure computing", IEEE Trans. Dep.and Secure Computing, vol. 1, no. 1, pp. 11-33, 2004.

N. Nasser, L. Karim, A. Ali, M. Anan, and N. Khelifi, "Routing inthe internet of things", in: GLOBECOM 2017 - 2017 IEEE Global Communications Conference, 2017, pp. 1-6.

A. Power and G. Kotonya, "A microservices architecture for reactiveand proactive fault tolerance in iot systems", in: IEEE 19th WoWMoM, 2018, pp. 588-599.

J. Grover and R. M. Garimella, "Reliable and fault-tolerant iot-edge architecture", in: 2018 IEEE SENSORS, 2018, pp. 1-4.

K. S. Trivedi, A. Bobbio, and J. Muppala, Reliability and Availability Engineering: Modeling, Analysis, and Applications. Cambridge: Cambridge University Press, 2017.

L. Lamport and N. Lynch, "Distributed computing: Models andmethods", in: Formal Models and Semantics, ser. Handbook of Theoretical Computer Science, J. VAN LEEUWEN, Ed. Amsterdam: Elsevier, 1990, pp. 1157 - 1199.

P. Jalote, Fault Tolerance in Distributed Systems. USA: Prentice-Hall,Inc., 1994.

M. A. A. da Cruz, J. J. P. C. Rodrigues, J. Al-Muhtadi, V. V. Korotaev, and V. H. C. de Albuquerque, "A reference model for internet of things middleware", IEEE Internet of Things Journal, vol. 5, no. 2, pp. 871-883, 2018.

CISCO, "The internet of things reference model", in: WhitePaper, 2014.

R. Khan, S. U. Khan, R. Zaheer, and S. Khan, "Future internet: The internet of things architecture, possible applications and key challenges", in: 10th Int’l Conf. on Frontiers of Inf. Technology, 2012, pp. 257-260.

Miao Wu, Ting-Jie Lu, Fei-Yang Ling, Jing Sun, and Hui-Ying Du, "Research on the architecture of internet of things", in: 3rd ICACTE, vol. 5, 2010, pp. V5-484-V5-487.

B. Kitchenham, "Procedures for performing systematic reviews", Keele, UK, Keele Univ., vol. 33, 08 2004.

Y. Sahni, J. Cao, S. Zhang, and L. Yang, "Edge mesh: A new paradigm to enable distributed intelligence in internet of things", IEEE Access, vol. 5, pp. 16 441-16 458, 2017.

S. K. Tarai and S. Shailendra, "Optimal and secure controller placement in sdn based smart city network", in: 2019 International Conference on Information Networking (ICOIN), 2019, pp. 254-261.

W. B. Qaim and O. Ozkasap, "Draw: Data replication for enhanced data availability in iot-based sensor systems", in: Int'l Conf.DASC/PiCom/DataCom/CyberSciTech, 2018, pp. 770-775.

A. Celesti, L. Carnevale, A. Galletta, M. Fazio, and M. Villari, "A watchdog service making container-based micro-services reliable in iot clouds", in: IEEE 5th FiCloud, 2017, pp. 372-378.

J. Chudzikiewicz, J. Furtak, and Z. Zielinski, "Fault-tolerant techniques for the internet of military things", in: 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), 2015, pp. 496-501.

Teng Xu and M. Potkonjak, "Energy-efficient fault tolerance approach for internet of things applications", in: 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2016, pp. 1-8.

S. Zhou, K. Lin, J. Na, C. Chuang, and C. Shih, "Supporting service adaptation in fault tolerant internet of things", in: IEEE SOCA, 2015, pp.65-72.

C. Chilipirea, A. Ursache, D. O. Popa, and F. Pop, "Energy efficiency and robustness for iot: Building a smart home security system", in: IEEEICCP, 2016, pp. 43-48.

M. D. Gutierrez, V. Tenentes, T. J. Kazmierski, and D. Rossi, "Lowcost error monitoring for improved maintainability of iot applications", in: IEEE DFT, 2017, pp. 1-6.

M. Gottscho, I. Alam, C. Schoeny, L. Dolecek, and P. Gupta, "Low-cost memory fault tolerance for iot devices", ACM Trans. Embed. Comput.Syst., vol. 16, no. 5s, Sep. 2017.

T.Chakraborty, A. U. Nambi, R. Chandra, R. Sharma, M. Swaminathan,Z. Kapetanovic, and J. Appavoo, "Fall-curve: A novel primitive for iot fault detection and isolation", in: 16th ACM SenSys, ser. SenSys ’18. New York, NY, USA: ACM, 2018, p. 95-107.

J. L. Gutierrez-Rivas, J. Lopez-Jimenez, E. Ros, and J. Díaz, "Whiterabbit hsr: A seamless subnanosecond redundant timing system with low-latency data capabilities for the smart grid", IEEE Trans. Ind. Informatics, vol. 14, no. 8, pp. 3486-3494, 2018.

J. Park, "All-terminal reliability analysis of wireless networks of redundant radio modules", IEEE Internet of Things Journal, vol. 3, no. 2, pp. 219-230, 2016.

O. Kaiwartya, A. H. Abdullah, Y. Cao, J. Lloret, S. Kumar, R. R. Shah, M. Prasad, and S. Prakash, "Virtualization in wireless sensor networks: Fault tolerant embedding for internet of things", IEEE Internet of Things Journal, vol. 5, no. 2, pp. 571-580, 2018.

L. Dai, B. Wang, L. T. Yang, X. Deng, and L. Yi, "A nature-inspired node deployment strategy for connected confident information coverage in industrial internet of things", IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9217-9225, 2019.

B. Mostafa, A. Benslimane, M. Saleh, S. Kassem, and M. Molnar, "An energy-efficient multiobjective scheduling model for monitoring in internet of things", IEEE Internet of Things Journal, vol. 5, no. 3, pp.1727-1738, 2018.

S. Zhou, K. Lin, and C. Shih, "Device clustering for fault monitoring in internet of things systems", in: IEEE WF-IoT, 2015, pp. 228-233.

J. Lin, P. R. Chelliah, M. Hsu, and J. Hou, "Efficient fault-tolerant routing in iot wireless sensor networks based on bipartite-flow graph modeling" IEEE Access, vol. 7, pp. 14 022-14 034,2019.

K. Fan, J. Lu, D. Sun, Y. Jin, R. Shen, and B. Sheng, "Failure resilient routing via iot networks", in: IEEE iThings/GreenCom/CPSCom/SmartData, 2017, pp. 845-850.

M. Z. Hasan and F. Al-Turjman, "Swarm-based data delivery framework in the ad hoc internet of things", in: GLOBECOM, 2017, pp. 1-6.

M. Z. Hasan and F. Al-Turjman, "Optimizing multipath routing with guaranteed fault tolerance in internet of things", IEEE Sensors Journal, vol. 17, no. 19, pp. 6463-6473, 2017.

A. Power and G. Kotonya, "Complex patterns of failure: Fault tolerance via complex event processing for iot systems" in: IEEE iThings/GreenCom/CPSCom/SmartData, 2019, pp. 986-993.

M. S. Ardekani, R. P. Singh, N. Agrawal, D. B. Terry, and R. O. Suminto, "Rivulet: A fault-tolerant platform for smart-home applications", in: Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference, ser. Middleware '17. New York, NY, USA: Association for Computing Machinery, 2017, p. 41-54.

P. A. Kodeswaran, R. Kokku, S. Sen, and M. Srivatsa, "Idea: A system for efficient failure management in smart iot environments", in: Proceedings of the MobiSys. New York, NY, USA: Association for Computing Machinery, 2016, p. 43-56.

J. -w. Xu, K. Ota, M. -x. Dong, A. -f. Liu, and Q. Li, "SIoTFog: Byzantine-resilient IoT fog networking", Frontiers of Information Technology & Electronic Engineering, vol. 19, no. 12, pp. 1546-1557, Dec. 2018.

T. N. Gia, A. Rahmani, T. Westerlund, P. Liljeberg, and H. Tenhunen, "Fault tolerant and scalable iot-based architecture for health monitoring", in: 2015 IEEE Sensors Applications Symposium (SAS), 2015, pp. 1-6.

S. Sharma, S. Gupta, S. Gupta, and S. B. Kotwal, "Iot based innovative dual level control system with fault tolerance fail safe capability", in: ICICCS, 2018, pp. 307-312.

A. S. Pillai, G. S. Chandraprasad, A. S. Khwaja, and A. Anpalagan, "A service oriented iot architecture for disaster preparedness and forecasting system", Internet of Things, p. 100076, 2019.

G. Furquim, G. P. R. Filho, R. Jalali, G. Pessin, R. W. Pazzi, and J. Ueyama, "How to improve fault tolerance in disaster predictions: A case study about flash floods using iot, ml and real data", Sensors (Basel, Switzerland), vol. 18, no. 3, p. 907, 2018.

T. M. Fernandez-Carames and P. Fraga-Lamas, "A review on the use of blockchain for the internet of things", IEEE Access, vol. 6, pp. 32 979-33 001, 2018.

E. Leka, B. Selimi, and L. Lamani, "Systematic literature review of blockchain applications: Smart contracts", in: 2019 International Conference on Information Technologies (InfoTech), 2019, pp. 1-3.

Y. Yu, S. Zhang, C. Chen, and X. Zhong, "Lvchain: A lightweight and vote-based blockchain for access control in the iot", in: IEEE 4th ICCC,2018, pp. 870-874.

H. Bai, G. Xia, and S. Fu, "A two-layer-consensus based blockchain architecture for iot", in: IEEE 9th ICEIEC, 2019, pp. 1-6.

S. Wang, S. Tseng, K. Yan, and Y. Tsai, "Reaching agreement in an integrated fog cloud iot", IEEE Access, vol. 6, pp. 64 515-64 524, 2018.

W. Yoon, I. Choi, and D. Kim, "Blockons: Blockchain based object name service", in: IEEE ICBC, 2019, pp. 219-226.

S. -C. Wang, Y. -J. Lin, and K. -Q. Yan, "Reaching byzantine agreement underlying vanet", KSII Transactions on Internet and Information Systems, vol. 13, no. 7, p. 3351, 2019.
Publicado
23/11/2020
Como Citar

Selecione um Formato
PASTÓRIO, André; RODRIGUES, Luiz; DE CAMARGO, Edson. Uma Revisão Sistemática da Literatura Sobre Tolerância a Falhas em Internet das Coisas. In: ARTIGOS COMPLETOS - SIMPÓSIO BRASILEIRO DE ENGENHARIA DE SISTEMAS COMPUTACIONAIS (SBESC), 10. , 2020, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 57-64. DOI: https://doi.org/10.5753/sbesc_estendido.2020.13091.