Avaliação de Algoritmos de Criptografia e Implementação de um Protocolo Leve para Comunicação entre Dispositivos IoT
Resumo
A criptografia tem papel fundamental na segurança em Internet das Coisas (IoT). No entanto, algoritmos e protocolos tradicionais de criptografia podem não ser adequados para IoT devido a heterogeneidade, baixa capacidade computacional e consumo energético dos seus dispositivos. O objetivo deste trabalho é avaliar diferentes algoritmos de criptografia e implementar um protocolo leve para comunicação entre dispositivos IoT. A avaliação dos algoritmos considera tempo de execução, uso de CPU, memória e consumo energético. O protocolo emprega os algoritmos SHA-3, AES e ECDH e e projetado a partir dos algoritmos avaliados. Resultados demonstram que o protocolo leva menos de 0,8 segundos para garantir confidencialidade e integridade na troca de mensagens usando uma placa Raspberry Pi como gateway e um ESP32 como dispositivo final.
Referências
Statista, "Forecast end-user spending on IoT solutions worldwide from 2017 to 2025", 2020, acesso em 30/03/2020. [Online]. Available: https://www.statista.com/statistics/976313/global-iot-market-size/
S. Upadhyay, "Ongoing challenges and research opportunities in internet of things (IoT)", in International Journal of Engineering Technologies and Management Research, 2018, pp. 216–222
N. Sklavos and I. D. Zaharakis, "Cryptography and security in internet of things (IoTs): Models, schemes, and implementations", 8th IFIP Int. Conference on New Technologies, Mobility and Security (NTMS), 2016
R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan, "Internet of things (IoT) security: Current status, challenges and prospective measures", in 10th Int. Conf. for Internet Technology and Secured Transactions (ICITST), 2015, pp. 336–341
R. C. Lunardi, R. A. Michelin, C. V. Neu, and A. F. Zorzo, "Distributed access control on IoT ledger-based architecture", Network Operations and Management Symposium (NOMS), 2018
D. Kim and M. G. Solomon, Fundamentos de segurança de sistemas de informação˜ . Rio de Janeiro, RJ: LTC, 2014
T. K. Goyal and V. Sahula, "Lightweight security algorithm for low power IoT devices", in Int. Conf. on Advances in Computing, Communications and Informatics (ICACCI), 2016, pp. 1725–1729
A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, "Internet of things: A survey on enabling technologies, protocols, and applications", IEEE communications surveys & tutorials, vol. 17, no. 4, pp. 2347–2376, 2015
W. Stallings, "Criptografia e segurança de redes", 6th ed. Sao Paulo: ˜Pearson, 2015
W. Diffie and M. Hellman, "New directions in cryptography", IEEE transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976
U. M. Maurer and S. Wolf, "The diffie–hellman protocol", Designs, Codes and Cryptography, vol. 19, no. 2-3, pp. 147–171, 2000
D. Hankerson, A. J. Menezes, and S. Vanstone, "Guide to elliptic curve cryptography", Computing Reviews, vol. 46, no. 1, p. 13, 2005
C. Lederer, R. Mader, M. Koschuch, J. Großschadl, A. Szekely, and S. Tillich, "Energy-efficient implementation of ecdh key exchange for wireless sensor networks", in IFIP International Workshop on Information Security Theory and Practices. Springer, 2009, pp. 112–127
M. A. AlAhmad and I. F. Alshaikhli, "Broad view of cryptographic hash functions", International Journal of Computer Science Issues (IJCSI), vol. 10, no. 4, p. 239, 2013
NIST. (2015) Nist releases sha-3 cryptographic hash standard. [Online]. Available: https://www.nist.gov/news-events/news/2015/08/nist-releases-sha-3-cryptographic-hash-standard
G. C. C. F. Pereira, R. C. A. Alves, F. L. da Silva, R. M. Azevedo, B. C. Albertini, and C. B. Margi, "Performance evaluation of cryptographic algorithms over IoT platforms and operating systems", Security and Communication Networks, vol. 2017, no. 2046735, 2017
R. Harkanson and Y. Kim, "Applications of elliptic curve cryptography: A light introduction to elliptic curves and a survey of their applications", in Conference on Cyber and Information Security Research, ser. CISRC ’17. New York, NY, USA: ACM, 2017, pp. 6:1–6:7
T. Putman. (2017) Ecdh-based authentication using pre-shared asymmetric keypairs for (datagram) transport layer security ((d)tls) protocol version 1.2. Acessado em 09/10/2019. [Online]. Available: https://tools.ietf.org/id/draft-putman-tls-preshared-ecdh-00.html
S. Dhanda, B. Singh, and P. Jindal, "Lightweight cryptography: A solution to secure IoT", Wireless Personal Communications, pp. 1–34, 2020
S. Dhanda, B. Singh, and P. Jindal, "Lightweight cryptography: A solution to secure IoT", Wireless Personal Communications, pp. 1–34, 2020
M. El-hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni, "A survey of internet of things (IoT) authentication schemes", Sensors, vol. 19, no. 5, p. 1141, 2019
R. Weatherley. (2018) Arduino cryptography library. Acessado em 01/07/2019. [Online]. Available: https://rweather.github.io/arduinolibs/crypto.html
C. K. Alexander and M. N. Sadiku, "Fundamentos de circuitos elétricos". AMGH Editora, 2013
Arduino. (2018) Build process. Acessado em 30/09/2019. [Online]. Available: https://github.com/arduino/Arduino/wiki/Build-Process
Espressif, "Esp32 series datasheet", 2019, acessado em 13/08/2020. [Online]. Available: https://www.espressif.com/sites/default/files/documentation/esp32 datasheet en.pdf
D. J. Bernstein, "Curve25519: new diffie-hellman speed records", in International Workshop on Public Key Cryptography. Springer, 2006, pp. 207–228