Balanceamento em Estéticas e Dinâmicas Para Imersão em Certos Gêneros de Jogos - Revisão Rápida da Literatura

  • Herick Henrique Cardouzo UNIRIO
  • Tadeu Moreira de Classe UNIRIO

Resumo

Uma das principais dificuldades no processo de design de um jogo está em realizar o balanceamento de seus elementos de modo a deixar os jogadores imersos durante o gameplay. Essa dificuldade está diretamente associada em equilibrar a habilidade do jogador aos elementos de gameplay, o que não é uma tarefa simples considerando a enorme variedade de gêneros de jogos e suas características distintas. Visto isso, este artigo tem por objetivo realizar uma revisão rápida da literatura (RRL) com o intuito de investigar estudos sobre o balanceamento de elementos estéticos e dinâmicos em jogos do gênero ação, estratégia, RPG e simulação. A execução do RRL retornou 150 estudos, porém, após serem submetidos a critérios de inclusão e exclusão, apenas 14 foram aceitos. Como resultado, observou-se contextos, técnicas e métodos de balanceamento, sobretudo muito relacionados a mecânicas de jogo. Isso, foi interpretado como oportunidades de investigação futuras sobre o balanceamento de elementos estéticos e mecânicos, contribuindo assim, com avanços no estudo em game design.

Referências

Aarseth, E. (2004). Genre trouble. Electronic book review, 3:1–7.

Andrade, G., Ramalho, G., Santana, H., e Corruble, V. (2005). Challenge-sensitive action selection: an application to game balancing. In IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pages 194–200. IEEE.

Apperley, T. H. (2006). Genre and game studies: Toward a critical approach to video game genres. Simulation & gaming, 37(1):6–23.

Balqis, N. e Mohammad, B. (2022). Mda framework in game design. Technical University of Malaysia Malacca.

Barta, S., Gurrea, R., e Flavian, C. (2022). The role of flow consciousness in consumer regret. Internet Research, 32(3):875–896.

Cartaxo, B., Pinto, G., e Soares, S. (2018). The role of rapid reviews in supporting decision-making in software engineering practice. In Proceedings of the 22nd International Conference on Evaluation and Assessment in Software Engineering 2018, pages 24–34.

Caserman, P., Hoffmann, K., Müller, P., Schaub, M., Straßburg, K., Wiemeyer, J., Bruder, R., Göbel, S., et al. (2020). Quality criteria for serious games: serious part, game part, and balance. JMIR serious games, 8(3):e19037.

Colby, R. e Colby, R. S. (2019). Game design documentation: Four perspectives from independent game studios. Communication Design Quarterly Review, 7(3):5–15.

Crockett, L. J. (2016). ”easy to learn, difficult to master”: Accessible front-ends to challenging science assignments. In European Conference on Games Based Learning, page 144. Academic Conferences International Limited.

Csikszentmihalyi, M. (2013). Flow: The psychology of happiness. Random House.

Engström, H. e Backlund, P. (2022). Serious games design knowledge: Experiences from a decade (+) of serious games development. EAI Endorsed Transactions on Serious Games, 6(1):1–13.

Figueira, F. M., Nascimento, L., da Silva Junior, J., Kohwalter, T., Murta, L., e Clua, E. (2018). Bing: A framework for dynamic game balancing using provenance. In 2018 17th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), pages 57–5709. IEEE.

Garcia, B. E., Crocomo, M. K., e Andrade, K. O. (2018). Dynamic difficulty adjustment in a whac-a-mole like game. In 2018 17th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), pages 88–888. IEEE.

Granic, I., Lobel, A., e Engels, R. C. (2014). The benefits of playing video games. American psychologist, 69(1):66.

Hall, A. (2007). The social implications of enjoyment of different types of music, movies, and television programming. Western Journal of Communication, 71(4):259–271.

Herz, J. C. (1997). Joystick nation: How videogames ate our quarters, won our hearts, and rewired our minds. Atlantic/Little, Brown.

Hunicke, R., LeBlanc, M., Zubek, R., et al. (2004). Mda: A formal approach to game design and game research. In Proceedings of the AAAI Workshop on Challenges in Game AI, volume 4, page 1722. San Jose, CA.

Ishihara, M., Ito, S., Ishii, R., Harada, T., e Thawonmas, R. (2018). Monte-carlo tree search for implementation of dynamic difficulty adjustment fighting game ais having believable behaviors. In 2018 IEEE Conference on Computational Intelligence and Games (CIG), pages 1–8. IEEE.

Junior, R. e Silva, F. (2021). Redefining the mda framework—the pursuit of a game design ontology. Information, 12(10):395.

Kirriemuir, J. e McFarlane, A. (2004). Literature review in games and learning.

Kummer, L. B. M., Nievola, J. C., e Paraiso, E. C. (2017). Digital game usage lifecycle: a systematic literature review. In Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), pages 1163–1172.

Ouriques, L., Xexéo, G., e Barbosa, C. E. (2021). A proposal to model wargames in the mda framework. In Anais Estendidos do XX Simpósio Brasileiro de Jogos e Entretenimento Digital, pages 1–9. SBC.

Pagalyte, E., Mancini, M., e Climent, L. (2020). Go with the flow: Reinforcement learning in turn-based battle video games. In Proceedings of the 20th ACM international conference on intelligent virtual agents, pages 1–8.

Pereira, F., Rodrigues, P., e Prates, R. (2016). Updates effects in a puzzle/rpg game and their impacts on players experience. SBC–Proceedings of SBGames 2016.

Pérez, L. J. F., Calla, L. A. R., Valente, L., Montenegro, A. A., e Clua, E. W. G. (2015). Dynamic game difficulty balancing in real time using evolutionary fuzzy cognitive maps. In 2015 14th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), pages 24–32. IEEE.

Pfau, J., Liapis, A., Volkmar, G., Yannakakis, G. N., e Malaka, R. (2020). Dungeons & replicants: automated game balancing via deep player behavior modeling. In 2020 IEEE Conference on Games (CoG), pages 431–438. IEEE.

Politowski, C., Petrillo, F., Ullmann, G. C., de Andrade Werly, J., e Guéhéneuc, Y.-G.(2020). Dataset of video game development problems. In Proceedings of the 17th International Conference on Mining Software Repositories, pages 553–557.

Pratama, H. A. e Krisnadhi, A. A. (2018). Representing dynamic difficulty in turn-based role playing games using monte carlo tree search. In 2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS), pages 207–212. IEEE.

Putra, S. D. e Yasin, V. (2021). Mda framework approach for gamification-based elementary mathematics learning design. International Journal of Engineering, Science and Information Technology, 1(3):35–39.

Ruela, A. S. e Guimaraes, F. G. (2012). Evolving battle formations in massively multiplayer online strategy games. In SBC-Proc. of the Brazilian Symposium on Games and Digital Entertainment-SBGames, pages 49–55.

Santos, F. e Ramalho, G. (2012). A parametric analysis and classification of quests in mmorpgs. Proceedings of SBGames, pages 119–123.

Silva, M. P., do Nascimento Silva, V., e Chaimowicz, L. (2015). Dynamic difficulty adjustment through an adaptive ai. In 2015 14th Brazilian symposium on computer games and digital entertainment (SBGames), pages 173–182. IEEE.

Silva, R., Rodrigues, R., e Leal, C. (2019). Play it again: how game-based learning improves flow in accounting and marketing education. Accounting Education, 28(5):484–507.

Susi, T., Johannesson, M., e Backlund, P. (2007). Serious games: An overview.

Sweetser, P. e Wyeth, P. (2005). Gameflow: a model for evaluating player enjoyment in games. Computers in Entertainment (CIE), 3(3):3–3.

Tamborini, R. e Skalski, P. (2012). The role of presence in the experience of electronic games. In Playing video games, pages 263–281. Routledge.

Tomlinson, C. (2019). Building a gamer: Player preferences and motivations across gender and genre. In DiGRA Conference.

Uman, L. S. (2011). Systematic reviews and meta-analyses. Journal of the Canadian Academy of Child and Adolescent Psychiatry, 20(1):57.

Vargas-Iglesias, J. J. (2020). Making sense of genre: The logic of video game genre organization. Games and Culture, 15(2):158–178.

Wang, J.-Y. e Tseng, Y.-R. (2013). Dynamic difficulty adjustment by fuzzy rules using in a neural network controlled game. In 2013 Ninth International Conference on Natural Computation (ICNC), pages 277–281. IEEE.

Weber, M. e Notargiacomo, P. (2020). Dynamic difficulty adjustment in digital games using genetic algorithms. In 2020 19th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), pages 62–70. IEEE.

Wolf, M. J. (2001). Genre and the video game. The medium of the video game, 1:113–134.

Zamith, M., da Silva Junior, J. R., Clua, E. W., e Joselli, M. (2020). Applying hidden markov model for dynamic game balancing. In 2020 19th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), pages 38–46. IEEE.
Publicado
2023-11-06
Como Citar
CARDOUZO, Herick Henrique; CLASSE, Tadeu Moreira de. Balanceamento em Estéticas e Dinâmicas Para Imersão em Certos Gêneros de Jogos - Revisão Rápida da Literatura. Anais Estendidos do Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames), [S.l.], p. 200-212, nov. 2023. ISSN 0000-0000. Disponível em: <https://sol.sbc.org.br/index.php/sbgames_estendido/article/view/27811>. Acesso em: 18 maio 2024. doi: https://doi.org/10.5753/sbgames_estendido.2023.233835.
Seção
Trilha de Artes & Design – Artigos Completos