Suavização de Oscilações em Barra de Pulverização com Input Shapping e Controle Adaptativo Robusto por Modelo de Referência
Resumo
A necessidade da barra de pulverização agrícola estar paralela ao solo durante a operação requer sistemas de suspensão ativa com controladores que reduzam ao máximo as oscilações associadas ao movimento de rolagem. Este trabalho propõe a integração da técnica input shaping de vibração nula (ZV) com controladores adaptativos robustos baseados em modelo, o MRAC e o VS-MRAC, comparando seus resultados. A robustez do VS-MRAC é evidenciada com ganhos de rastreamento e sinal de controle quando o mesmo é integrado ao input shaping.
Referências
Chu, Z. and Hu, J. (2016). An improved recursive least square–based adaptive input shaping for zero residual vibration control of flexible system. Advances in Mechanical Engineering, 8(4):1–14.
Costa, R. and Hsu, L. (1992). Robustness of vs-mrac with respect to unmodelled dynamics and external disturbances. Adaptive Control and Signal Processing, 6(1):19–33.
Cui, L., Mao, H., and Xue, X. (2019a). Hydraulic-drive roll movement control of a spray boom using adaptive robust control strategy. Advances in Mechanical Engineering, 11(2):1–15.
Cui, L., Xue, X., Le, F., Mao, H., and Ding, S. (2019b). Design and experiment of electro hydraulic active suspension for controlling the rolling motion of spray boom. Int J Agric and Biol Eng, 12(4):72–81.
Deprez, K., Anthonis, J., Ramon, H., and Brussel, H. (2002). Development of a slow active suspension for stabilizing the roll of spray booms, part 2: controller design. Biosystems Engineering, 81(3):273–279.
Dhame, A. and Jayasuriya, S. (2003). Increasing the robustness of the input-shaping method using adaptive control. In Proceedings of American Control Conference, volume 2, pages 1578–1583.
Dias, S., Queiroz, K., and Araújo, A. (2021). Controlador adaptativo robusto para o processo de tanque quádruplo. In XV Simpósio Brasileiro de Automação Inteligente, pages 1392–1399.
Goubej, M., Vyhlídal, T., and Schlegel, M. (2020). Frequency weighted h2 optimization of multi-mode input shaper. Automatica, 121:109202.
Hung, J. (2003). Feedback control with posicast. IEEE Trans on Ind Electronics, 50(1):94–99.
Ioannou, P. and Sun, J. (2012). Robust Adaptive Control. Dover, New York, 2nd edition.
Kappaun, R., MeiraJr., A., and Walber, M. (2021). Parameters for modeling passive suspensions of spray bars. Engenharia Agrícola, 41(3):368–378.
Kasprowiak, M., Parus, A., and Hoffmann, M. (2022). Vibration suppression with use of input shaping control in machining. Sensors, 22(2186):1–22.
Mohammed, A., Alghanim, K., and Andani, M. (2020). An adjustable zero vibration input shaping control scheme for overhead crane systems. Shock and Vibration, 2020(7879839):1–7.
Oliveira, P. and Boaventura-Cunha, J. (2013). Gantry crane control: a simulation case study. In 2013 2nd Experiment@ International Conference (exp.at’13), pages 58–63.
Singh, T. and Singhose, W. (2002). Input shaping/time delay control of maneuvering flexible structures. In Proceedings of the 2002 American Control Conference, volume 3, pages 1717–1731.
Singhose, W., Singer, N., and Seering, W. (1995). Comparison of command shaping methods for reducing residual vibration. In Proceedings of European Control Conference, pages 1126–1131.
Smith, O. (1957). Posicast control of damped oscillatory systems. In Proceedings of the IRE, pages 1249–1255.
Utkin, V., Guldner, J., and Shi, J. (2009). Sliding Mode Control in Electro-Mechanical Systems. CRC Press, Boca Raton, 2nd edition.