Automatic detection of Learning Styles using clustering and classification techniques

  • Rafael Miranda Abreu Universidade Federal dos Vales do Jequitinhonha e Mucuri
  • Cristiano Grijó Pitangui Universidade Federal de São João Del-Rei
  • Alessandro Vivas Andrade Universidade Federal dos Vales do Jequitinhonha e Mucuri
  • Luciana Pereira Assis Universidade Federal dos Vales do Jequitinhonha e Mucuri https://orcid.org/0000-0002-7891-7172
  • Cristiano Maciel Silva Universidade Federal de São João del Rei

Abstract


In recent years Learning Management Systems have been widely used
to support Education. However, most of these systems provide the same content in the same way and formats to all students, which can be detrimental to the teaching/learning process. In this sense, this work, based on Felder-Silverman Learning Style model, presents an automatic approach to detect the students’ Learning Styles so that the content offered is modeled according to their preferences. The proposed model, based on clustering and classification techniques, achieved an accuracy rate up to 90% proving to be a promising approach to automatically detect the students’ learning preferences.
Keywords: learning styles, data mining, learning management systems

References

Bernard, J., Chang, T. W., Popescu, E., and Graf, S. (2017). Learning style Identifier: Improving the precision of learning style identification through computational intelligence algorithms. Expert Systems with Applications, 75:94–108.


Borges, G. and Stiubiener, I. (2014). Recommending learning objects based on utility and learning style. 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, 2015-Febru(February):1–9.


Carvalho, V., Araújo, R. D., Ferreira, H., Cattelan, R., and Dorça, F. (2017). OntAES: Uma Ontologia para Sistemas Adaptativos Educacionais Baseado em Objetos


de Aprendizagem e Estilos de Aprendizagem. page 1307.


Daniel, R., Dorça, F. A., and Resende, D. T. (2015). Recomendação de conteúdo personalizada com base em estilos de aprendizagem: uma abordagem prática. Revista


Brasileira de Informática na Educação, 23(03):12.


Felder, R. and Silverman, L. (1988). Learning and teaching styles in engineering education. Engineering education, 78(June):674–681.


Felder, R. and Soloman, B. (1991). Learning Styles and Stratgies. Strategies, pages 10–12.


Frank, E., Hall, M. A., and Witten, I. H. (2016). The WEKA Workbench. Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques.


Graf, S. and Kinshuk (2009). Advanced Adaptivity in Learning Management Systems by Considering Learning Styles. In 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, volume 3, pages 235–238. IEEE.


Graf, S., Kinshuk, and Liu, T. C. (2008). Identifying learning styles in learning management systems by using indications from students’ behaviour. The 8th IEEE International Conference on Advanced Learning Technologies, pages 482–486.


Khribi, M. K., Jemni, M., Nasraoui, O., Graf, S., and Kinshuk (2013). Toward a Fully Automatic Learner Modeling Based on Web Usage Mining with Respect to Educational Preferences and Learning Styles. In 2013 IEEE 13th International Conference on Advanced Learning Technologies, pages 403–407. IEEE.


Kirschner, P. A. and van Merriënboer, J. J. (2013). Do Learners Really Know Best? Urban Legends in Education. Educational Psychologist, 48(3):169–183.


Kolekar, S. V., Pai, R. M., and Pai, M. (2017). Prediction of Learner’s Profile based on learning styles in Adaptive E-learning System. iJET, 12(6):31–51.


Kurilovas, E., Zilinskiene, I., and Dagiene, V. (2014). Recommending suitable learning scenarios according to learners’ preferences: An improved swarm based approach. Computers in Human Behavior, 30:550–557.


Pitigala Liyanage, M. P., Gunawardena, K. L., and Hirakawa, M. (2016). Detecting Learning Styles in Learning Management Systems Using Data Mining. IPSJ Transactions on Computers and Education, 2(1):1–10.


Rawson, K., Stahovich, T. F., and Mayer, R. E. (2017). Homework and achievement: Using smartpen technology to find the connection. Journal of Educational Psychology, 109(2):208–219.


Ribeiro, F. A. A., Fonseca, L. C. C., and Freitas, M. D. S. (2013). Recomendando Objetos de Aprendizagem a partir das hashtags postadas no Moodle. XXIV Simpósio Brasileiro de Informática na Educação (SBIE 2013), 25(Cbie):82–91.


Zaina, L. A. M., Bressan, G., Cardieri, M. A. A. C., and Rodrigues Júnior, J. F. (2012). e-LORS: Uma Abordagem para Recomendação de Objetos de Aprendizagem. Revista Brasileira de Informática na Educação, 20(1):04.
Published
2020-11-24
ABREU, Rafael Miranda; PITANGUI, Cristiano Grijó; ANDRADE, Alessandro Vivas; ASSIS, Luciana Pereira; SILVA, Cristiano Maciel. Automatic detection of Learning Styles using clustering and classification techniques. In: BRAZILIAN SYMPOSIUM ON COMPUTERS IN EDUCATION (SBIE), 31. , 2020, Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 1022-1031. DOI: https://doi.org/10.5753/cbie.sbie.2020.1022.