Performance Study of Collaborative Filtering Algorithms for Educational Recommender Systems applying Prior Grouping of Users with Similar Personality Traits

  • Janderson Jason Barbosa Aguiar Federal University of Campina Grande (UFCG)
  • Joseana Macêdo Fechine Federal University of Campina Grande (UFCG)
  • Evandro de Barros Costa Federal University of Alagoas (UFAL)

Abstract


Some research on Educational Recommender Systems uses the Trait Theory (Personality Traits — PT) when applying Collaborative Filtering (CF). In this paper, we start from the idea that all CF algorithms implicitly deal with users’ PT, and by explicitly grouping users based on these PT, the algorithms’ performance can improve. In this research, we conducted an experimental study on CF algorithms’ accuracy, applying a previous grouping of users (mostly computing students) based on their PT (Big Five model). With the applied strategy, the results indicated that there is the possibility of improving the accuracy of neighborhood-based CF algorithms in the educational domain.
Keywords: Educational Recommender Systems, Collaborative Filtering, Personality Traits

References

Aggarwal, C. C. (2016). Recommender Systems: The Textbook. 1st ed. Springer International Publishing, 498 p. ISBN: 978-3-319-29659-3.


Aguiar, J. J. B. (2017). Considerando Estilos de Aprendizagem, Emoções e Personalidade em Informática na Educação. Informática na Educação: teoria & prática, Porto Alegre, v. 20, n. 2, p. 85–102.


Aguiar, J. J. B., Santos, S. I. N., Fechine, J. M. e Costa, E. (2015). Avaliação de Sistemas de Recomendação Educacionais no Brasil: uma revisão sistemática da literatura. In: Anais do Simpósio Brasileiro de Informática na Educação (SBIE), Maceió, p. 1255–1264.


Aguiar, J. J. B., Araújo, J. M. F. R. e Costa, E. B. (2019). Experimentando a Influência dos Traços de Personalidade do Modelo Big Five na Recomendação de Recursos Educacionais. In: Anais do Simpósio Brasileiro de Informática na Educação (SBIE), Brasília, p. 1711–1720.


Allport, F. H. e Allport, G. W. (1921). Personality Traits: Their Classification and Measurement. The Journal of Abnormal and Social Psychology, v. 16, n. 1, p. 6–40.


Alves, T., et al. (2020). Incorporating personality in user interface design: A review. Personality and Individual Differences, v. 155.


Alyari, F. e Navimipour, N. J. (2018). Recommender systems: A systematic review of the state of the art literature and suggestions for future research. Kybernetes, v. 47, n. 5, p. 985–1017.


Boslaugh, S. e Watters, P. A. (2008). Statistics in a Nutshell. 1st ed. O'Reilly Media, Inc., Sebastopol, CA, USA. ISBN: 978-0-596-51049-7.


Campos, A., et al. (2017). Mapeamento de Soluções tecnológicas em Sistemas de Recomendação Educacionais em âmbito brasileiro. Informática na Educação: teoria & prática, Porto Alegre, v. 20, n. 3, p. 79–96.


Chen, L., Wu, W. e He, L. (2016). Personality and Recommendation Diversity. In: Tkalčič, M., et al. (Eds.), Emotions and Personality in Personalized Services. Human–Computer Interaction Series. Springer, p. 201–225.


Costa, E., Aguiar, J. e Magalhães, J. (2013). Sistemas de Recomendação de Recursos Educacionais: conceitos, técnicas e aplicações. In: Anais da Jornada de Atualização em Informática na Educação (JAIE), p. 57–78.


Drachsler, H., et al. (2015). Panorama of Recommender Systems to Support Learning. In: Ricci, F., et al. (Eds.), Recommender Systems Handbook, p. 421–451.


Elahi, M., et al. (2013). Personality-Based Active Learning for Collaborative Filtering Recommender Systems. In: Baldoni, M., et al. (Eds.), Proceeding of the XIII International Conference on AI*IA 2013: Advances in Artificial Intelligence, v. 8249, p. 360–371.


Erdt, M., Fernandez, A. e Rensing, C. (2015). Evaluating Recommender Systems for Technology Enhanced Learning: A Quantitative Survey. IEEE Transactions on Learning Technologies, v. 8, n. 4, p. 326–344.


Fernández-Tobías, I. e Cantador, I. (2014). Personality-Aware Collaborative Filtering: An Empirical Study in Multiple Domains with Facebook Data. In: Proceedings of the 15th International Conference on Electronic Commerce and Web Technologies, Springer, p. 125-137.


Ferreira, T. B., et al. (2020). Regras para formação de grupos de colaboração utilizando detecção automática de traços de personalidade. Brazilian Journal of Computers in Education, v. 28, p. 273–296.


Ferreira, V. A. S., Vasconcelos, G. C. e França, R. S. (2017). Mapeamento Sistemático sobre Sistemas de Recomendações Educacionais. In: Anais do Simpósio Brasileiro de Informática na Educação (SBIE), Recife, p. 253–262.


Gantner, Z., et al. (2011). MyMediaLite: A Free Recommender System Library. In: Proceedings of the Fifth ACM Conference on Recommender Systems (RecSys ’11), Chicago, USA, p. 305–308.


Gianotti, R. C., Cazella, S. C. e Behar, P. A. (2019). A Model for Integrating Personality Traits into an Educational Recommender System. In: IEEE 19th International Conference on Advanced Learning Technologies (ICALT), Maceió, Brasil, p. 383–385.


Han, J., Kamber, M. e Pei, J. (2012). 8 - Classification: Basic Concepts. In: Data Mining: Concepts and Techniques (Third Edition) — A volume in The Morgan Kaufmann Series in Data Management Systems, p. 327–391. ISBN: 978-0-12-381479-1.


Hu, R. e Pu, P. (2011). Enhancing collaborative filtering systems with personality information. In: Proceedings of the Fifth ACM Conference on Recommender Systems (RecSys ’11), New York, USA, p. 197–204.


IBM. (2019). IBM Cloud Docs — Personality Insights. Disponível em: http://cloud.ibm.com/docs/personality-insights. Acesso em: 08 jul. 2020.


Jaques, P. A. e Nunes, M. A. S. N. (2019). Computação afetiva aplicada à educação. In: Pimentel, M., Sampaio, F. F. e Santos, E. O. (Org.). Informática na Educação: técnicas e tecnologias computacionais. Porto Alegre: Sociedade Brasileira de Computação. (Série Informática na Educação, v. 3.).


Katarya, R. e Verma, O. P. (2016). Recent developments in affective recommender systems. Physica A: Statistical Mechanics and its Applications, v. 461, p. 182–190.


Klašnja-Milićević, A., et al. (2017). E-Learning Systems: Intelligent Techniques for Personalization. Springer. ISBN: 978-3-319-41163-7.


Laisa, J., et al. (2018). Uma Revisão Sistemática da Literatura sobre Sistemas de Recomendação Educacional. In: Anais do IX Computer on the Beach, Florianópolis, p. 751–760.


Leite, R., et al. (2019). Sistemas de Recomendação em Ambientes Educacionais: Estado da Arte e Perspectivas Futuras. In: Anais dos Workshops do Congresso Brasileiro de Informática na Educação, v. 8, n. 1, p. 109–118.


Magalhães, J., et al. (2015). Recommending Scientific Papers: Investigating the User Curriculum. In: Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference.


Moraes, T. C. H. e Stiubiener, I. (2019). Sistemas Híbridos para Recomendações Educacionais: Uma Revisão Sistemática da Literatura. In: Anais do Simpósio Brasileiro de Informática na Educação (SBIE), Brasília, p. 1331–1340.


Morais, F., et al. (2017). Computação Afetiva aplicada à Educação: uma revisão sistemática das pesquisas publicadas no Brasil. In: Anais do Simpósio Brasileiro de Informática na Educação (SBIE), Recife, p. 163–172.


Nunes, M. A. S. N. e Hu, R. (2012). Personality-based recommender systems: an overview. In: Proceedings of the Sixth ACM Conference on Recommender Systems (RecSys ’12), ACM, New York, USA, p. 5–6.


Pinho, P. C. R., et al. (2019). Developments in Educational Recommendation Systems: a systematic review. IEEE Frontiers in Education Conference (FIE), Covington, KY, USA, 2019, p. 1–7.


Reis, R. C. D., et al. (2018). Affective states in computer-supported collaborative learning: Studying the past to drive the future. Computers & Education, v. 120, p. 29–50.


Roshchina, A., Cardiff, J. e Rosso, P. (2015). TWIN: Personality-based Intelligent Recommender System. Journal of Intelligent & Fuzzy Systems, IOS Press, v. 28, n. 5, p. 2059–2071.


Salehi, M. (2014). Latent Feature Based Recommender System for Learning Materials Using Genetic Algorithm. Journal of Information Systems and Telecommunication, v. 2, n. 3, p. 137–144.


Schwartz, H. A., et al. (2013). Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach. PLoS ONE, v. 8, n. 9, p. e73791.


Shah, D., Shah, P. e Banerjee, A. (2017). Similarity based regularization for online matrix-factorization problem: An application to course recommender systems. In: TENCON 2017-2017 IEEE Region 10 Conference, p. 1874–1879.


Su, C.-Y., et al. (2015). A Cluster-based Personalized Item Recommended Approach on the Educational Assessment System. International Journal of Emerging Technologies in Learning (iJET), v. 10, n. 5, p. 52–58.


Tkalčič, M. (2018). Emotions e personality in recommender systems: tutorial. In: Proceedings of the 12th ACM Conference on Recommender Systems (RecSys’18), Vancouver, ACM, New York, USA, p. 535–536.


Tkalčič, M., et al. (2009). Personality Based User Similarity Measure for a Collaborative Recommender System. In: Proceedings of the 5th Workshop on Emotion in Human-Computer Interaction-Real World Challenges, p. 30–37.


Vygotsky, L. (1978). Mind in Society: The Development of Higher Psychological Processes. Harvard University Press, Cambridge, MA.


Xia, F., et al. (2014). Socially Aware Conference Participant Recommendation with Personality Traits. IEEE Systems Journal, p. 1–12.


Yakhchi, S., et al. (2020). Enabling the Analysis of Personality Aspects in Recommender Systems. arXiv preprint arXiv:2001.04825.


Zarzour, H., et al. (2018). A new collaborative filtering recommendation algorithm based on dimensionality reduction and clustering techniques. In: 9th International Conference on Information and Communication Systems (ICICS), IEEE, p. 102–106.


Published
2020-11-24
AGUIAR, Janderson Jason Barbosa; FECHINE, Joseana Macêdo; COSTA, Evandro de Barros. Performance Study of Collaborative Filtering Algorithms for Educational Recommender Systems applying Prior Grouping of Users with Similar Personality Traits. In: BRAZILIAN SYMPOSIUM ON COMPUTERS IN EDUCATION (SBIE), 31. , 2020, Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 1082-1091. DOI: https://doi.org/10.5753/cbie.sbie.2020.1082.