Analysis of the Impacts of Time Management on Academic Performance Through Educational Data Mining

Abstract


With technological advances in the educational environment, new challenges have also emerged. Among these, there is the difficulty in identifying factors that corroborate with a good academic performance of students in distance learning courses. Thus, this work aims to analyze the impacts of time management on students' academic performance. For this, the K-means technique was used to carry out the grouping of students in relation to their academic performance, an Artificial Neural Network to classify these groups based on time management variables, and the SHAP method to interpret the variables that most impacted on the performance rating, according to time management. For the construction of this research, data from distance learning courses extracted from the moodle platform of a public university in the state of Pernambuco were used. In conclusion, it was possible to observe which time management characteristics positively impact students' academic performance.

Keywords: Educational data mining, clustering, Neural networks, time management, academic performance

References

RODRIGUES, R. L.; SANTOS, J. L. S. (2020) Revisão sistemática sobre características de gestão de tempo na realização de atividades educacionais em sistemas de gerenciamento de aprendizagem. RELATEC.

BARNES, T.; DESMARAIS, M.; ROMERO, C.; VENTURA, S. (2009) Educational Data Mining. 2nd International Conference on Educational Data Mining, Proceedings. Cordoba, Spain.

NASCIMENTO, R. L. S.; CRUZ JUNIOR, G. G.; FAGUNDES, R.A. (2018) Mineração de dados educacionais: um estudo sobre indicadores da educação em bases de dados do INEP. NOVA TECNOLOGIA NA EDUCAÇÃO. V.16.

MELO, E. P. S.; FARIAS, A. P. S. (2015) Gerenciamento do tempo e da rotina de trabalho: um estudo de caso numa agência do banco Bradesco S/A. CONGRESSO NACIONAL DE EXCELÊNCIA EM GESTÃO.

BROADBENT, J.; POON, W. L. (2015) Self regulated learning strategies & academic achievement in online higher education learning environments: A systematic review. The Internet and Higher Education.

SAS, (2021) Mineração de dados: O que é e qual a sua importância? Disponível em: https://www.sas.com/pt_br/insights/analytics/mineracao-de-dados.html Acessado em 14 de Abril de 2021

KASSAMBARA, A. Cluster Analysis in R. Vol. 1, 2017.

SANTOS, J. L. S.; RODRIGUES, L. R. (2020) Revisão sistemática sobre características de gestão de tempo na realização de atividades educacionais em sistemas de gerenciamento de aprendizagem. Revista Latinoamericana de Tecnología Educativa.

SHAP (2021) Documentação oficial do SHAP. Disponível em: https://shap.readthedocs.io/en/latest/index.html. Acessado em 11 de Maio de 2021.

WICKHAM, H.; GROLEMUND, G (2019). R para data sciense. Alta Books.
Published
2021-11-22
NASCIMENTO, Pricylla Santos Cavalcante do; SILVA JUNIOR, Adelson Santos da; SCHULZ, Camila Linhares; SANTOS, Maria Victória Rodrigues dos; MACIEL, Alexandre Magno Andrade; RODRIGUES, Rodrigo Lins; NASCIMENTO, Robson Raabi do; ALENCAR, Fernanda Maria Ribeiro. Analysis of the Impacts of Time Management on Academic Performance Through Educational Data Mining. In: BRAZILIAN SYMPOSIUM ON COMPUTERS IN EDUCATION (SBIE), 32. , 2021, Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 783-791. DOI: https://doi.org/10.5753/sbie.2021.217742.