Analyzing the Effectiveness of an Educational Process for Teaching Programming Through Educational Robotics in a Brazilian Technical and Vocational High School
Resumo
Problem-solving is an essential human development skill that can be fostered through Computational Thinking (CT). Programming education has been explored to develop CT in High Schools. However, teaching programming can be challenging, being necessary educational processes that improve guidelines to direct this teaching. In the past, we proposed an educational process based on methods for teaching programming with Educational Robotics (ER) and the Anthropological Theory of Didactics. However, we still need to conclude the effectiveness validation of this educational process. This study aims to evaluate our educational process’s effectiveness in developing Technical and Vocational High School students’ CT skills. We intend to answer the research question: RQ) How effective is the impact of an educational process of teaching programming with ER on students’ CT skills in High School? The development of CT skills was evaluated through the Román-Gonzalez CT Test. The overall results indicated that the educational process is effective in teaching programming with ER impacting CT skills. This study’s result contributes to the scientific community in the sense of guiding the validation of an educational process.
Referências
Azman, S. M. S., Arsat, M., and Mohamed, H. (2017). The framework for the integration of computational thinking in ideation process. In 2017 IEEE 6th International Conference on Teaching, Assessment, and Learning for Engineering (TALE), pages 61–65. IEEE.
Bers, M. U., Flannery, L., Kazakoff, E. R., and Sullivan, A. (2014a). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education.
Bers, M. U., Flannery, L., Kazakoff, E. R., and Sullivan, A. (2014b). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72:145–157.
Bosch, M. and Gascón, J. (2006). Twenty-five years of the didactic transposition. ICMI bulletin, 58(58):51–65.
Chalmers, C. (2018). Robotics and computational thinking in primary school. International Journal of Child-Computer Interaction.
Chevalier, M., Giang, C., Piatti, A., and Mondada, F. (2020a). Fostering computational thinking through educational robotics: A model for creative computational problem solving. International Journal of STEM Education, 7(1):1–18.
Chevalier, M., Giang, C., Piatti, A., and Mondada, F. (2020b). Fostering computational thinking through educational robotics: A model for creative computational problem solving. International Journal of STEM Education.
Chevallard, Y. (1989). On didactic transposition theory: Some introductory notes. In Proceedings of the international symposium on selected domains of research and development in mathematics education, pages 51–62. Comenius University Bratislava, Czechoslovakia.
Chevallard, Y. (1992a). Fundamental concepts in didactics: Perspectives provided by an anthropological approach. Research in didactique of mathematics: Selected papers, pages 131–168.
Chevallard, Y. (1992b). A theoretical approach to curricula. Journal fuer Mathematik-didaktik, 13(2):215–230.
Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du didactique. Recherches en didactique des mathématiques, 19(2):221–266.
Coe, R. (2002). It’s the effect size, stupid: What effect size is and why it is important. In Annual Conference of the British Educational Research Association. Education-line.
Cohen, L., Morrison, K., and Manion, L. (2011). Research methods in education. IEducation, Research methods. Routledge.
Colomb, J. (1986). Chevallard (yves).—la transposition didactique: du savoir savant au savoir enseigné. Revue française de pédagogie.
da Silva Petini, L. O. (2018). Conhecimentos matemáticos mobilizados por alunos no desenvolvimento de projetos de robótica. Semana da Matemática do Instituto de Matemática.
Ebenezer Takuno de, M. and Thais Helena dos, S. (2015). Dicionário interativo da educação brasileira-educabrasil. São Paulo: Midiamix Editora.
González, M. R. (2015). Computational thinking test: Design guidelines and content validation. In Proceedings of EDULEARN15 conference, pages 2436–2444.
Isabelle M. L., S., Andrade, W. L., and Lívia M. R., S. (2019). Analyzing the effect of computational thinking on mathematics through educational robotics. In 2019 IEEE Frontiers in Education Conference (FIE), pages 1–7.
Jeannette M, W. (2006). Computational thinking. Commun. ACM, 49(3):33–35.
Mongeon, P. and Paul-Hus, A. (2016). The journal coverage of web of science and scopus: a comparative analysis. Scientometrics, 106(1):213–228.
Mubin, O., Stevens, C. J., Shahid, S., Al Mahmud, A., and Dong, J.-J. (2013). A review of the applicability of robots in education. Journal of Technology in Education and Learning, 1(209-0015):13.
Papert, S. and Harel, I. (1991). Situating constructionism. Constructionism, 36(2):1–11.
Papert, S. A. (1980). Mindstorms: Children, computers, and powerful ideas. Basic books.
Pivetti, M., Di Battista, S., Agatolio, F., Simaku, B., Moro, M., and Menegatti, E. (2020). Educational robotics for children with neurodevelopmental disorders: A systematic review. Heliyon, 6(10):e05160.
Plomp, T. et al. (2013). Educational design research: An introduction. Educational design research, pages 11–50.
Rowe, G. and Wright, G. (2001). Expert opinions in forecasting: the role of the delphi technique. In Principles of forecasting, pages 125–144. Springer.
Schivani, M. (2014). Contextualização no ensino de física à luz da teoria antropológica do didático: o caso da robótica educacional. 2014. 220f. PhD thesis, Tese (Doutorado em Ensino de Ciências e Matemática)—Faculdade de Educação . . . .
Souza, I., Andrade, W., and Sampaio, L. (2021a). Aplicações da robótica educacional para o desenvolvimento do pensamento computacional no contexto do ensino médio integral. In Anais do Simpósio Brasileiro de Educaçã em Computação, pages 44–54, Porto Alegre, RS, Brasil. SBC.
Souza, I. M., Andrade, W. L., and Sampaio, L. M. (2022). A framework for teaching programming in high school through educational robotics. In 2022 IEEE Frontiers in Education Conference (FIE), pages 1–9. IEEE.
Souza, I. M. L., Andrade, W. L., and Sampaio, L. M. R. (2021b). Educational robotics applications for the development of computational thinking in a brazilian technical and vocational high school. Informatics in Education.
Souza, I. M. L., Andrade, W. L., and Sampaio, L. M. R. (2021c). Educational robotics applied to computational thinking development: A systematic mapping study. In 2021 IEEE Frontiers in Education Conference (FIE), pages 1–8.
Souza, I. M. L., da Silva Rodrigues, R., and Andrade, W. (2016a). Explorando robótica com pensamento computacional no ensino médio: Um estudo sobre seus efeitos na educação. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE), page 490.
Souza, I. M. L., da Silva Rodrigues, R., and Andrade, W. (2016b). Introdução do pensamento computacional na formação docente para ensino de robótica educacional. In Anais dos Workshops do Congresso Brasileiro de Informática na Educação, page 1265.
Tekdal, M. (2021). Trends and development in research on computational thinking. Education and Information Technologies, 26(5):6499–6529.
Tucker, A. (2003). A model curriculum for k–12 computer science: Final report of the acm k–12 task force curriculum committee. ACM.
Viviane Gurgel de, C. (2008). Roboeduc: especificação de um software educacional para ensino da robótica às crianças como uma ferramenta de inclusão digital. Master’s thesis, Universidade Federal do Rio Grande do Norte.
Voogt, J., Fisser, P., Good, J., Mishra, P., and Yadav, A. (2015). Computational thinking in compulsory education: Towards an agenda for research and practice. Education and Information Technologies, 20(4):715–728.
Williams, P. L. and Webb, C. (1994). The delphi technique: a methodological discussion. Journal of advanced nursing, 19(1):180–186.
Wright, J. T., Giovinazzo, R. A., et al. (2000). Delphi: uma ferramenta de apoio ao planejamento prospectivo. Caderno de pesquisas em administração, 1(12):54–65.
Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., and Korb, J. T. (2011). Introducing computational thinking in education courses. In Proceedings of the 42nd ACM technical symposium on Computer science education, pages 465–470.
Yang, W., Ng, D. T. K., and Gao, H. (2022). Robot programming versus block play in early childhood education: Effects on computational thinking, sequencing ability, and self-regulation. British Journal of Educational Technology.
Zanardi, D. C. (2013). A análise praxeológica de atividades experimentais subsidiando a elaboração de situações-problema no ensino de física. PhD thesis, Universidade de São Paulo.
Zanetti, H. and Oliveira, C. (2015). Práticas de ensino de programação de computadores com robótica pedagógica e aplicação de pensamento computacional. In Anais dos Workshops do Congresso Brasileiro de Informática na Educação, page 1236.
Zapata-Cáceres, M., Martín-Barroso, E., and Román-González, M. (2020). Computational thinking test for beginners: Design and content validation. In 2020 IEEE Global Engineering Education Conference (EDUCON), pages 1905–1914.
Zawieska, K. and Duffy, B. R. (2015). The social construction of creativity in educational robotics. In Progress in Automation, Robotics and Measuring Techniques, pages 329–338. Springer.
ZOOM, E. f. L. (2010). Zoom education for life. In Zoom for Education.