Uaffect: Um Modelo para Predição de Estados Afetivos em Ambientes Educacionais a partir de Históricos de Contextos

  • Sandro O. Dorneles IFRS
  • Luís Guilherme Eich UNISINOS
  • Débora Nice Ferrari Barbosa Universidade Feevale
  • Rosemary Francisco UNISINOS
  • Jorge L. V. Barbosa UNISINOS

Abstract


Studies indicate the growth and relevance of recognition systems of affective states in different areas. It is also known that there is a strong relationship between emotions and learning. So, what is the importance of context information in predicting affective states in educational environments? Thus, this article proposes Uaffect, a computational model that uses historical contexts formed in educational environments to classify and predict affective states. The model was evaluated from a quasi experimental study with 25 students. The accuracy results found in the best scenario are 89% for positive affective states and 61% for negative affective states. The tests carried out showed evidences that indicate the possibility of using historical contexts in the classification and prediction of affective states in educational environments, which can be used to provide intelligent services that assist in decision making in educational planning and affective regulation of the student.

References

Álvarez, P.; Zarazaga-Soria, F. J.; Baldassarri, S. (2020). Mobile music recommendations for runners based on location and emotions: The DJ-Running system, Pervasive and Mobile Computing, 67, p. 101242.

Aranda, J. A. S.; Bavaresco, R.; Carvalho, J. V.; Yamin, A. C.; Tabares, M. T.; Barbosa, J. L. V. (2021). A computational model for adaptive recording of vital signs through context histories. Journal of Ambient Intelligence and Humanized Computing, v. 1, p. 115.

Benţa, K. I.; Cremene, M.; Gibă, N. R.; Eligio, U. X.; Rarău, A. (2010). Secondary Emotions Deduction from Context, Innovations and Advances In Computer Sciences and Engineering. Springer-Verlag Berlin, Heidelberger Platz 3, D-14197 BERLIN, GERMANY, p. 165+.

Castellano, G.; Leite, I.; Pereira, A.; Martinho, C.; Paiva, A.; Mcowan, P. W. (2010). Inter-ACT: An affective and contextually rich multimodal video corpus for studying interaction with robots, in MM’10 Proceedings of the ACM Multimedia 2010 International Conference, p. 1031–1034.

Chen, J., Yang, T., Huang, Z., Wang, K., Liu, M., & Lyu, C. (2023). Incorporating structured emotion commonsense knowledge and interpersonal relation into contextaware emotion recognition. Applied Intelligence, 53(4), 4201-4217.

Cosenza, R.; Guerra, L. (2011). Neurociência e educação. Artmed Editora

Dey, A. K. (2001). Understanding and Using Context, Personal Ubi Comp, 5(1), p. 4–7.

D’Mello, S.; Calvo, R. A. (2013). Beyond the basic emotions. CHI ’13 Extended Abstracts on Human Factors in Computing Systems on CHI EA ’13, p. 2287.

Dorneles, S. O., Francisco, R., Barbosa, D. N. F., & Barbosa, J. L. V. (2023). Context awareness in recognition of affective states: A systematic mapping of the literature.

International Journal of Human–Computer Interaction, 39(8), 1563-1581.

Eich, L. G. et al. (2022). ESMeRA: a computational model to support Experience Sampling Method (ESM) real-time application. In: XVIII Brazilian Symposium on Information Systems. p. 1-8.

Hoang, M. H.; Kim, S. H.; Yang, H. J.; Lee G. S. (2021). Context-Aware Emotion Recognition Based on Visual Relationship Detection. IEEE Access, 9, 90465-90474.

Kuo, Y. C.; Tseng, C. C. (2011). Recognizing the emotion of learners by physiological sensors to improve english learning performance, in 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), v. 4, p. 2152–2156.

Li, B.; Sano, A. (2020). Extraction and Interpretation of Deep Autoencoder-based Temporal Features from Wearables for Forecasting Personalized Mood, Health, and Stress, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol, 4(2), p. 49:1–49:26.

Martini, B. G.; Helfer, G. A.; Barbosa, J. L. V.; Espinosa Modolo, R. C.; Silva, M. R.; Figueiredo, R. M.; Mendes, A. S.; Leithardt, V. R. Q. (2021). IndoorPlant: A Model for Intelligent Services in Indoor Agriculture Based on Context Histories. SENSORS, v. 21, p. 1631.

Moore, P. (2017). Do We Understand the Relationship between Affective Computing, Emotion and Context-Awareness? Machines, 5(3), p. 16.

Object-Oriented Architecture SAP: PowerDesigner Documentation Collection. (2018). [link]. Agosto de 2022.

Picard, R. W. (1997). Affective Computing. Cambridge: MIT Press.

Santos, O. C.; Saneiro, M.; Boticario, J. G.; Rodriguez-Sanchez, M. C. (2016). Toward interactive context-aware affective educational recommendations in computer-assisted language learning, New Review of Hypermedia and Multimedia, 22(1-2), p. 27–57.

Santos, O. C.; Uria-Rivas, R.; Rodriguez-Sanchez, M. C.; Boticario, J. G. (2016). An Open Sensing and Acting Platform for Context-Aware Affective Support in Ambient Intelligent Educational Settings, IEEE Sensors Journal, 16(10), p. 3865–3874.

Sarmiento-Calisaya, E., Ccori, P. C., & Parari, A. C. (2022). An emotion-aware persuasive architecture to support challenging classroom situations. In 2022 IEEE International Conference on Consumer Electronics. p. 1-2.

Satyanarayanan, M. (2001). Pervasive Computing: Vision and Challenges. In: IEEE Personal Communications, 4(8) p. 10-17.

Scherer, K. R. (2000). Psychological models of emotion. The neuropsychology of emotion, v. 137, n. 3, p. 137-162.

Shminan, A. S., & Othman, M. K. (2015). Dynamic student assessment to advocate personalized learning plan. In 2015 International Conference on Information Technology Systems and Innovation p. 1-6.

Uria-Rivas, R., Rodriguez-Sánchez, M. C., Santos, O. C., Vaquero, J., & Boticario, J. G. (2019). Impact of physiological signals acquisition in the emotional support provided in learning scenarios. Sensors, 19(20), 4520.

Wang, Z., Lao, L., Zhang, X., Li, Y., Zhang, T., & Cui, Z. (2022). Context-dependent emotion recognition. Journal of Visual Communication and Image Representation, 89, 103679.

Weiser, M. (1991). The Computer for the 21st Century. Scientific American. v. 265, n. 3, p.94-104.
Published
2023-11-06
DORNELES, Sandro O.; EICH, Luís Guilherme; BARBOSA, Débora Nice Ferrari; FRANCISCO, Rosemary; BARBOSA, Jorge L. V.. Uaffect: Um Modelo para Predição de Estados Afetivos em Ambientes Educacionais a partir de Históricos de Contextos. In: BRAZILIAN SYMPOSIUM ON COMPUTERS IN EDUCATION (SBIE), 34. , 2023, Passo Fundo/RS. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 1062-1073. DOI: https://doi.org/10.5753/sbie.2023.235233.