Size Measurement for Data Mart Systems

  • Angélica Toffano S. Calazans Caixa Econômica Federal
  • Káthia Marçal de Oliveira UCB
  • Rildo Ribeiro dos Santos UCB

Abstract


To better control the time, cost and resources assigned to software projects, organizations need a proper estimate of their size even before the projects actually start. Accordingly, several approaches were proposed to estimate the size of a software project. Most of these approaches aim at measuring the size of any type of software system, whatever the technology. However some authors argue that each technology has specific particularities, which must be taken into account. Data Mart systems, for instance, have particularities in their development that are different from the traditional software systems. It is important, therefore, to have an estimation approach that considers those particularities while measuring the Data Mart size. This work presents an adaptation of the Function Points Analysis approach for Data Mart size estimation. It also presents and discusses results on Data Mart projects developed in the industry.
Keywords: Functional measurement, Data Mart, size estimation, Function Point Analysis

References

AGUIAR, Maurício. Estimando os projetos com Cocomo II no RUP. Developers Magazine. Set/2002.

BARBIERI, C. BI-Business Intelligence – Modelagem & tecnologia. Rio de Janeiro: Axcel Books do Brasil Editora, 2001.

CALAZANS, A., OLIVEIRA, K., SANTOS, R. Dimensionando Data Marts :Uma adequação de uma métrica funcional. In: II Simpósio Brasileiro de Qualidade de Software, 2003. Fortaleza. Anais SBQS 2003. Fortaleza, Unifor, 2003.

IFPUG. International Function Point Users Group. Function Point Counting Practices Manual: Release 4.1. Ohio: IFPUG. 2000. 1 v.

FENTON, N., PFLEEGER, S. Software metrics a rigorous & practical approach. 2nd. Ed., PWS Publishing Company, 1997.

GARMUS, D., HERRON, D. Function point analysis – measurement practices for successful software projects. Addison-Wesley Information Technology Series, 2000.

INMON, W.H. , Definition of a Data Warehouse. 1999. Disponível em: <www.billinmon.com/library/articles/dwedef.asp. Acesso em 05 Mai 2003.

ISBSG. Benchmarking Repository, Release 6. ISBSG. Abr, 2002.

KIMBALL, R., ROSS, M. Data warehouse toolkit: o guia completo para modelagem multidimensional.Rio de Janeiro: Campus, 2002. 494 p.

LOKAN, C., ABRAN, A. Multiple viewpoints in functional size measurement. In: International Workshop on Software measurement - IWSM’99. Canada. p. 121- 132, 1999.

PHADKE, M.S., Quality Engineering Using Robust Design. Prentice Hall, Englewood Cliffs New Jersey, 1989.

SIMÕES, C. Sistemática de Métricas, qualidade e produtividade. Developers’ Magazine, Brasil, 1999.

VIEIRA, S. Estatistica Experimental. 2.ed, São Paulo: Atlas. 1999.

WITTIG, G., MORRIS, P., FINNIE, G., RUDOLPH, E. Formal methodology to establish function points coefficientes. School of Information Technology. Australia, [1997?].

WOHLIN,C., RUNESON,P., HOST,M.,OHLSSON, M.,REGNELL, B., WESSLEN, A. Experimentation in Software Engineering An Introduction. Kluwer Academic Publishers. Londres, 2000.
Published
2004-05-31
CALAZANS, Angélica Toffano S.; DE OLIVEIRA, Káthia Marçal; DOS SANTOS, Rildo Ribeiro. Size Measurement for Data Mart Systems. In: BRAZILIAN SOFTWARE QUALITY SYMPOSIUM (SBQS), 3. , 2004, Brasília. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2004 . p. 381-395. DOI: https://doi.org/10.5753/sbqs.2004.16210.